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ABSTRACT

The latest trend towards performance asymmetry among cores on a single chip of a mul-

ticore processor is posing new challenges. For effective utilization of these performance-

asymmetric multicore processors, code sections of a program must be assigned to cores such

that the resource needs of code sections closely matches resource availability at the assigned

core. Determining this assignment manually is tedious, error prone, and significantly com-

plicates software development. To solve this problem, this thesis describes a transparent and

fully-automatic process called phase-based tuning which adapts an application to effectively

utilize performance-asymmetric multicores. The basic idea behind this technique is to stati-

cally compute groups of program segments which are expected to behave similarly at runtime.

Then, at runtime, the behavior of a few code segments is used to infer the behavior and pre-

ferred core assignment of all similar code segments with low overhead. Compared to the stock

Linux scheduler, for systems asymmetric with respect to clock frequency, a 36% average pro-

cess speedup is observed, while maintaining fairness and with negligible overheads.

A key component to phase-based tuning is grouping program segments with similar behav-

ior. The importance of various similarity metrics are likely to differ for each target asymmetric

multicore processor. Determining groups using too many metrics may result in a grouping that

differentiates between program segments based on irrelevant properties for a target machine.

Using too few metrics may cause relevant metrics to be ignored thereby considering segments

with different behavior similar. Therefore, to solve this problem and enable phase-based tun-

ing for a wide range of a performance-asymmetric multicores, this thesis also describes a new

technique called lazy grouping. Lazy grouping statically (at compile and install times) groups

program segments that are expected to have similar behavior. The basic idea is to use extensive
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compile time analysis with intelligent install time (when the target system is known) group as-

signment. The accuracy of lazy grouping for a wide range of machines is shown to be more

than 90% for nearly all target machines and asymmetric multicores.
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CHAPTER 1. Introduction

Increases in single processor performance through frequency scaling has hit a wall [66].

Improving performance for this class of processors is prohibitively expensive due to design

complexity, space constraints, and heat dissipation [29]. Therefore, replicating cores has be-

come commonplace in recent years in order to continue improving performance as suggested

by Moore’s law [29].

Many recent processor designs have been homogeneous multicore processors. These ho-

mogeneous designs have some drawbacks [4, 5, 31, 44, 53, 61]. Replicating fast complex

cores results in fewer cores and thus less performance for highly parallel programs but good

single-threaded performance. Replicating simpler less powerful cores results in improved per-

formance for highly parallel programs, but reduced serial performance.

Amdahl’s law states that the serial portion of the program limits the speedup achievable

by parallelism [60]. Thus, recently researchers and vendors have advocated the need for het-

erogeneous multicore processors to achieve the best of both types of systems (high throughput

for both parallel and sequential workloads) [4, 5, 31, 44, 53, 61]. A common trend is to have

a few fast cores to improve serial performance, but many slow cores to achieve high paral-

lel performance [31]. Other attractive options include specialized processors such as vector

processors or GPUs to accelerate certain portions of execution [26, 39]. There is also a poten-

tial to eliminate excess hardware capabilities from certain cores in the system (e.g. dedicated

floating point units, out-of-order execution, etc.) to use less power, reduce space, and decrease

heat. Aside from improving throughput for multiple types of workloads, a major advantage is

that heterogeneous multicore processors decrease power consumption and use less die space
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compared to homogeneous multicores [44]. For these same reasons, they are also seen as a

cost efficient alternative for supercomputing (especially for large data centers where power and

heat are important concerns) [58].

Single-ISA performance-asymmetric multicore processors (AMPs) [4, 5, 31, 44, 53, 61]

are an important class of these heterogeneous multicores. All cores in an AMP support the

same instruction set, however, they are heterogeneous in terms of performance characteristics

such as clock frequency, cache size, in-order vs. out-of-order execution, etc [31, 45, 61].

The technical contribution of this work is a hybrid (static and dynamic) program analysis

and optimization technique called phase-based tuning for effectively utilizing AMPs. In this

section, some of the major problems facing efficient use of AMPs are discussed. Then, an

overview of phase-based tuning is given. Finally, benefits of phase-based tuning are outlined.

1.1 Problems Facing Efficient Use of AMPs

There are several problems that arise with the introduction of AMPs. First, application per-

formance becomes unpredictable and scalability becomes increasingly difficult to ensure [6].

Additionally, programming languages are typically not designed to handle the increased com-

plexity of heterogeneous multicore processors and programmers are not trained to understand

their programs’ behavior and hardware characteristics [16]. Furthermore, program behavior

and/or system design may not be known statically. This necessitates new scheduling tech-

niques to take full advantage of these new architectures [9].

In general, for effective utilization of AMPs, code sections of a program must be executed

on cores such that the resource requirements of a section closely match the resources provided

by the core [43, 53]. To match the resource requirements of a code section to the resources

provided by the core, both must be known.

First, let us consider having the programmer manually perform such a mapping. This

manual tuning has at least three problems.
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1. First, the programmer must know the runtime characteristics of their code as well as

the details of the underlying asymmetry. This increases the burden on the program-

mer. Further, both the resource requirements of processes and the resources provided

by cores cannot be determined statically (code behavior may change with inputs, core

characteristics may change between different platforms or if the workload on the sys-

tem changes [49, 12]). This is troubling since utilization is heavily influenced by the

accuracy of this knowledge [43, 53, 49].

2. Second, with multiple target AMPs this manual tuning must be carried out for each AMP,

which can be costly, tedious, and error prone.

3. Third, as a result of this manual tuning a custom version must be created for each target

AMP, which decreases re-usability and creates a maintenance problem. Further, the per-

formance asymmetry present in the target AMP may not be known during development.

Next, consider an automated (or semi-automated) static technique. Such a technique has

several problems. First, both the resource requirements of processes and the resources provided

by cores cannot be determined statically (as discussed above). Also, like a manual approach,

unknown target AMPs creates a significant problem.

Finally, consider a dynamic technique. At runtime, there is an advantage of being able to

observe behavior of the program on each core type. Unfortunately, great care must be taken to

avoid excessive overhead which can easily overshadow gains achieved by such a technique.

Effective utilization of AMPs is a major challenge. Finding techniques for automatic tuning

is critical to address this challenge and to realize the full potential of AMPs [49].

1.2 Phase-based Tuning

To help solve the problem of effective utilization of AMPs, this thesis introduces a novel

program analysis technique called phase-based tuning for matching resource requirements of
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code sections to the resources provided by the cores of AMPs. Phase-based tuning builds on a

well-known insight that programs exhibit phase behavior [35, 37, 51, 64, 73, 79, 82]. That is,

programs go through phases of execution that show similar runtime characteristics compared

to other phases [7, 18, 20, 21, 30, 75]. Based on this insight, phase-based tuning has two

parts: static analysis which identifies likely phase-transition points (where runtime charac-

teristics are likely to change) between code sections, and a lightweight dynamic analysis that

determines section-to-core assignment by exploiting a program’s phase behavior. The static

analysis results are used to generate standalone binaries in which each phase-transition point is

instrumented with a tiny code fragment for dynamic analysis. These fragments contain analy-

sis code as well as phase information. This phase information reduces dynamic analysis costs

by using the runtime behavior of previously executed sections to make future assignments.

Figure 1.1 Overview of phase-based tuning. Segments are grouped statically. At runtime,
a few segments from each group are run on each core type and their behavior is
monitored. Using this observed behavior of only a few segments, entire groups are
assigned to cores.

Figure 1.1 illustrates a simple overview of phase-based tuning. On the far left there is a

simple function which contains two loops with different behaviors that are better suited for

the different cores in the target AMP. Thus, these two loops are placed into separate groups

(labeled A and B) which contain other code segments which should have similar resource

requirements. Next, at runtime, a few program segments from each group are executed on each

core type. After this, the expected best fit in terms of core type for the group is determined
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(groups become shaded) and all segments in the group are mapped to this core type. Finally,

the two loops considered initially now know which core they are likely to be best suited for

and may make the decision to execute themselves on these cores. It is important to note that

phase-based tuning did not require these loops to be executed on either core type.

Statically grouping similar program segments is a key component of phase-based tuning.

Here, a brief overview of lazy grouping, a novel static (compile+install) similarity grouping

technique is described. First, the limitations of a purely compile time grouping technique are

shown. Then, lazy grouping, and how it solves these problems is discussed.

1.2.1 Compile Time Grouping and its Problems

A simple compile time technique could be used to statically group similar program seg-

ments. This technique could work as follows. First, behavior metrics (e.g., instruction latency,

cache behavior) are statically computed for each program segment. For example, in Figure 1.1,

each loop has two metrics calculated for it thus placing each loop somewhere in a two dimen-

sional space. Using these metrics, all segments are grouped using the k-means clustering

technique [55]. The figure shows two groups marked A and B. The goal is that all segments

in a group have similar behavior.

For simple asymmetry such as difference in clock frequency, such compile time technique

works remarkably well, however, as the variety of asymmetry increases, a more sophisticated

approach is needed. For many different types of target machines, the analysis must compute

metrics for several aspects of behavior (e.g. caching, instruction level parallelism, etc) and

variations on each of these metrics (e.g. different cache sizes). Thus, there are many metrics

to consider.

Such a compile time technique has no knowledge of the relevance of metrics for the target

machines and thus will create the same groups for all machines. A metric (e.g. instruction

level parallelism) may only be relevant for a subset of target machines, however, compile time

grouping will differentiate based on this metric for all machines. Thus, it will likely create sep-
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arate groups which do not differ on many target machines. Consider the example in Figure 1.2.

On the left, a single metric relevant for this machine is used resulting in three groups. On the

right, an additional metric is added which is not strongly relevant for this machine. In this

case, this extra dimension hurts rather than helps. Total groups were tripled but those which

vary only in this dimension are similar. Such differentiation may cause excessive overhead for

phase-based tuning.
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Figure 1.2 Left: Runtime behavior of phase-based tuning using one similarity metric. Right:
The same process but with two metrics. The figure shows that with more metrics,
benefits likely decrease.

Adding metrics is desirable in order to tackle more diverse types of AMPs. However,

adding metrics into the existing approach creates too many groups, many of which may not

differ. Thus, a new technique is needed to handle a significant amount of metrics but produce

few, accurate groups.

1.2.2 Lazy Grouping and its Benefits

To address these problems, a novel technique is presented for accurately grouping similar

program segments without running them. The basic idea is as follows. At compile time, several

program behavior metrics are statically computed. At program install time (when the program

is put on the target machine) code segments are assigned to groups using a neural network

which takes as input the similarity metrics computed at compile time. This neural network

is created and trained at OS or machine install time once for each machine. This approach
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is called “lazy” since it waits till the target machine is known to compute the grouping rather

than doing so immediately after metrics are computed at compile time.

Lazy grouping has several benefits. First, it is able to tackle the problem of computing

program segment similarity for a wide variety of target machines since grouping is delayed

until install time. Thus problems caused by an unknown target machine are avoided. Second,

typical use of the technique (program install time) is very efficient since most of the overhead

occurs at compile time and OS/machine install time. Third, phase-based tuning is more effi-

cient (than when a purely compile time approach is used) for three reasons. First, the optimal

number of output groups (e.g. number of core types) may be specified while accuracy is main-

tained. Second, group distribution may be tuned, through neural network training, to fit the

target AMPs core distribution. Third, phase-based tuning no longer needs to perform runtime

monitoring and analysis since lazy groups have knowledge of the approximate behavior of the

code segments in each group.

To evaluate lazy grouping, its accuracy with respect to single core program behavior as well

as its use for AMPs is considered. This evaluation shows that lazy grouping is significantly

more accurate than compile time grouping and requires fewer groups. Further, results show

that lazy grouping is more than 90% accurate for nearly all target machines and AMPs tested.

Finally, an evaluation of lazy grouping’s impact on phase-based tuning is done. In this case,

there is a 17% higher average process speedup when lazy grouping is used.

1.3 Benefits of Phase-based Tuning

Phase-based tuning has the following benefits:

• Fully Automatic: Since phase-based tuning determines core assignments automatically

at runtime, the programmer need not be aware of the performance characteristics of the

target platform or their application.
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• Transparent Deployment: Programs are modified to contain their own analysis and

core switching code. Thus, no operating system or compiler modification is needed.

Therefore, phase-based tuning can be utilized with minimal disruption in the build and

deployment chain.

• Tune Once, Run Anywhere: The analysis and instrumentation makes no assumptions

about the underlying AMP. Thus there is no need to create multiple versions for each

target AMP. Also, by making no assumptions about the target AMP, interactions between

multiple threads and processes are automatically handled.

• Negligible Overhead: It incurs less than 3% space overhead and less than 0.1% time

overhead, i.e. it is useful for overhead conscious software and it is scalable.

• Improved Utilization: Phase-based tuning improves utilization of AMPs by reducing

average process time by as much as 36% while maintaining fairness.

To evaluate the effectiveness of phase-based tuning, it was implemented as part of a custom

binary static analysis and instrumentation framework and applied to workloads constructed

from the SPEC CPU 2000 and 2006 benchmark suites which are standard for evaluating pro-

cessors, memory and compilers. These workloads consist of a fixed number of benchmarks

running simultaneously. These workloads, running on a simple AMP where clock frequencies

differ, see as much as a 36% reduction in average process time while maintaining fairness and

incurring negligible overheads.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the hybrid analysis and

optimization technique called phase-based tuning for effectively utilizing AMPs. Next, Chap-

ter 3 describes the static binary analysis and instrumentation framework used for the evaluation

of phase-based tuning. Chapter 4 presents the experimental setup for evaluating phase-based
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tuning and the results. Chapter 5 gives a brief discussion of relevant issues facing practical and

future use of phase-based tuning. In Chapter 6, lazy grouping, a novel static behavior simi-

larity grouping technique, is discussed. Next, Chapter 7 describes the experimental setup for

evaluating the accuracy and effectiveness of lazy grouping and presents the evaluation results.

Then, Chapter 8 describes related work. Finally, Chapter 9 discusses potential future work and

Chapter 10 concludes.
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CHAPTER 2. Phase-based Tuning with Compile Time Grouping

In this chapter, phase-based tuning is described. The goal of phase-based tuning is to

match resource requirements of code sections to the resources provided by the cores of a

performance-asymmetric multicore processor.

The intuition behind phase-based tuning is the following. If static analysis can classify

a program’s execution into code sections and group these sections into clusters such that all

sections in the same cluster are likely to exhibit similar runtime characteristics; then the actual

runtime characteristics of a small number of representative sections in the cluster are likely to

manifest the behavior of the entire cluster. Thus, the exhibited runtime characteristics of the

representative sections can be used to determine the match between code sections in the cluster

and cores without analyzing each section in the cluster.

Classifying a program’s execution into sections and sections into clusters independent of

the program’s input, has several benefits. Most importantly, no development efforts for rep-

resentative inputs are needed; and thread-to-core assignments for unanticipated use cases and

varying architectures are automatically tackled.

Based on these intuitions, phase-based tuning works as follows. A static analysis is per-

formed to identify phase-transition points. This analysis first divides a program’s code into

sections then classifies these sections into one or more phase types. The idea is that two sec-

tions with the same phase type are likely to exhibit similar runtime behavior characteristics.

Third, the analysis identifies points in the program where the control flows [3] from a sec-

tion of one phase type to a section with a different phase type. These points are called the

phase-transition points.
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Each phase-transition point is statically instrumented to insert a small code fragment which

is called a phase mark1. A phase mark contains information about the phase type for the current

section, code for dynamic performance analysis, and code for making core switching decisions.

At runtime, the dynamic analysis code in the phase marks analyzes the actual characteris-

tics of a small number of representative sections of each phase type. These analysis results are

used to determine a suitable core assignment for the phase type such that the resources provided

by the core matches the expected resources for sections of that phase type. On determining a

satisfactory assignment for a phase type, all future phase marks for that phase type reduce to

simply making appropriate core switching decisions2. Thus, the actual characteristics of few

sections of a given phase type are used as an approximation of the expected characteristics

of all sections of that phase type. This allows phase-based tuning to significantly reduce run-

time overhead and automatically tackle new architectures. The rest of this chapter describes

components of phase-based tuning in detail.

2.1 Static Phase Transition Analysis

The aim of phase-based tunings static analysis is to determine points in the control-flow

where behavior is likely to change, that is phase-transition points. The precision and the

granularity of identifying such points is likely to determine the performance gains observed at

runtime. To that end, the first step in this analysis is to detect similarity among basic blocks in

the program and classify them into one or more phase types that are likely to exhibit similar

runtime behavior. Then, three analysis techniques are examined for detecting and marking

phase transitions with phase marks. The first is a basic block level analysis. The second builds

upon this basic block analysis to analyze intervals [3]. The third also builds upon the basic

block analysis to analyze loops inter-procedurally.

1The idea of phase marking is similar to the work by Lau et al. [50], however, this technique does not use a
program trace to determine phase marks and makes its selections based on a different criteria.

2 Huang et al. [38] show that basing processor adaptation on code sections (positional) rather than time
(temporal) improves energy reduction techniques. Phase-based tuning also takes a positional approach.
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Figure 2.1 Overview of phase transition analysis

Figure 2.1 illustrates this process for a basic block level analysis. Step 1 represents the

initial procedure. Blocks in the figure represent basic blocks and edges between them represent

paths that may be taken at runtime. Step 2 finds the blocks which are larger than the threshold

size (shaded). Next, step 3 finds the type for each block considered in the previous step. Then,

the phase transition points are reduced using a lookahead, this is illustrated in step 4. Finally,

step 5 shows the new control-flow graph for the procedure which now includes the phase

transition marks.

In this section, first the analysis techniques for annotating control-flow graphs (CFGs) with

types for all of these techniques are discussed. Next, how to use the annotated control-flow

graphs to perform the phase transition marking is discussed.

2.1.1 Static CFG Annotation

The three analysis techniques used to annotate a programs control-flow graph with type

information are now discussed. First, the techniques used for basic block analysis are de-

scribed. Then, this technique is expanded to include a technique for interval typing. Finally,

an inter-procedural loop based technique is described.
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This static analysis is performed using a custom framework for binary analysis and instru-

mentation that is described in Chapter 3. While there are limitations to constructing CFGs

from a binary representation, since phase-based tuning does not require sound results (incor-

rect assumptions just result in code that may be less efficient), this technique can make many

assumptions safely. For example, suppose part of a code segment has a branch or call with an

unknown target. In the current implementation, code segments are typed while ignoring the

missing target code’s impact on the type. Another option is to skip typing this code segment. If

the branch or call has several known potential targets, one could take the following approach.

For each target, determine the type for the segment assuming this specific target is executed.

If this type is the same for all potential targets, the segment receives this type. If different

types are determined as the result of analyzing each different target, then look to see if a ma-

jority of the potential targets result in the same type. If they do, this most common type could

be chosen, otherwise, the segment may be left untyped. If more precision is desired, a more

sophisticated analysis may be used or information may be gathered from the source code.

2.1.1.1 Attributed CFG Construction

The static analysis first divides a program into procedures (P) and each procedure p ∈ P

into basic blocks to construct the set of basic blocks (B) [3]. The classic definition of a basic

block is used (that it is a section of code that has one entry point and one exit point with no

jumps in between [3]). The analysis then assigns a type (π ∈Π) to each basic block to construct

the set of attributed basic blocks (B̄ ⊆ B ×Π). The notion of type here is different from types

in a program and does not necessarily reflect the concrete runtime behavior of the basic block.

Rather it suggests similarity between expected behaviors of basic blocks that are given the

same type. A strategy for assigning types to basic blocks statically is given in Section 2.1.3,

however, other methods for classifying basic blocks can also be used.

Using the attributed basic blocks, attributed intra-procedural control-flow graphs for proce-

dures are created. An attributed intra-procedural control-flow graph CFG is 〈N , E , η0〉. Here,
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N , the set of control-flow graph nodes is B̄ ∪ S, where S ranges over special nodes repre-

senting system calls and procedure invocations. The set of directed edges in the control-flow

is defined as E ⊆ N × N × {b, f}, where b, f represent backward and forward control-flow

edges. η0 ≡ (β, π) is a special block representing the entry point of the procedure, where

β ∈ B and π ∈ Π.

2.1.1.2 Summarizing Intervals

The goal of the intra-procedural interval [3] analysis is to summarize intervals into a single

type. To perform the interval analysis, start with the attributed control-flow graph for each

procedure created by the basic block analysis. Then use the basic block types to determine

interval types.

For each procedure, start by partitioning the attributed control-flow graph of the procedure

into a unique set of intervals (I) using standard algorithms [3]. “An interval (i(η) ∈ I)

corresponding to a node η ∈ N is the maximal, single entry subgraph for which η is the entry

node and in which all closed paths contain η [3, pp.6].” For each i, the analysis computes

its dominant type (as defined in Figure 2.2) by doing a depth-first traversal of the interval

starting with the entry node, while ignoring backward control-flow edges (marked with b)

unless traversal gets stuck at a non-leaf node. The exit nodes of the interval represent the leaf

nodes. This summarization algorithm is shown in Figure 2.2 and illustrated in Figure 2.1.1.2.

ρ = φ
for all DFS(I) do

if η ∈ ρ then
M ⊕ {π 7→M(π) + wb ∗ ϕ(η)}

else
M ⊕ {π 7→M(π) + wf ∗ ϕ(η)}

end if
ρ = η + ρ
return max(dom(M))

end for

Figure 2.2 Algorithm for interval summarization to find dominant type
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1

2 3

4

5

Types
A
B

Current Node: 1                           = 1
M(A) = {         (1)}         
M(B) = {0}

Current Node: 2                         = 2,1
M(A) = {         (1)}         
M(B) = {         (2)}

Current Node: 4                      = 4,2,1
M(A) = {         (1)}         
M(B) = {         (4)+          (2)}

Current Node: 5                   = 5,4,2,1
M(A) = {         (5)+          (1)}
M(B) = {         (4)+          (2)}

Current Node: 1                   = 5,4,2,1
M(A) = {         (1)+     (    (5)+    (1))}
M(B) = {         (4)+          (2)}

Figure 2.3 Interval summarization illustration

During a depth-first traversal the analysis maintains a stack of control-flow nodes encoun-

tered thus far (ρ = η + ρ′) with the entry node of the interval at the bottom of this stack and

the currently visited node at the top of the stack. A type map for the interval (M : Π 7→ R)

is maintained. On visiting a control-flow node η in the interval, the type map M is changed

to M ′ where M ′ is M ⊕ {π 7→ M(π) + wf ∗ ϕ(η)}. Here, π is the type of the control-flow

node, wf is the forward edge weight, ϕ maps nodes to node weights, and ⊕ is the overriding

operator for finite functions.

On reaching a control-flow node with an outgoing backward edge, if the backward edge

has not previously been traversed, the target control-flow node (η′) of the backward edge is

computed. For each control-flow node η′′ from η′ to η on the stack ρ, the type map M is

changed to M ′ where M ′ is M ⊕ {π 7→ M(π) + wb ∗ ϕη} and wb is the backward edge

weight. The values for wf and wb are heuristically decided, but intuitively it makes sense to

have wb greater than wf (to give more weight to nodes in loops). The node weight function,
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ϕ : N 7→ R, maps nodes to values based on a heuristic measure of the expected execution time

of the block. Currently the number of instructions in the node is used as this measure.

On completion of the depth-first traversal, the dominant type of the interval is π, where

@π′.M(π′) > M(π). In case of a tie, a simple heuristic is used. Currently, the type with

maximal number of control-flow nodes in the interval is used as a tiebreaker.

As a result of this process, the analysis obtains another control flow graph of the procedure

where nodes are tuples of intervals and their types. To distinguish these from control-flow

graphs of basic blocks, they are referred to as attributed interval graphs. It would be interesting

to explore whether summarizing interval graphs again is useful [3], however, in this work only

first-order intervals are considered. The initial intuition is that the value of applying nth order

interval summarization will depend on the average size of procedures.

2.1.1.3 Summarizing Loops

The goal of the inter-procedural loop analysis is to summarize loops into a single type.

The analysis starts with the attributed CFG for each procedure created by the basic block

analysis. The analysis then uses the basic block types to determine loop types. A bottom-

up typing is performed with respect to the call graph. In the case of indirect recursion, the

analysis randomly chooses one procedure to analyze first then analyze all procedures again

until a fixpoint is reached.

For each procedure, the analysis starts by partitioning the attributed CFG of the procedure

into a unique set of loops (L) using standard algorithms [63]. For each loop, l ∈ L, the analysis

computes its dominant type starting with the inner-most loops. The analysis does a breadth-

first traversal of the loop starting with the entry node, while ignoring backward edges. This

algorithm is shown in Figure 2.5 and illustrated in Figure 2.4.

Throughout the loop traversal, a type map (M : Π 7→ R) is maintained which maps types

to weights. On visiting a control-flow node in the loop, η ∈ l, the type map M is changed to

M ′ = M ⊕ {π 7→ M(π) + wn(λ) ∗ ϕ(η)}. Here, π is the type of the control-flow node η, wn
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Figure 2.4 Loop summarization illustration

maps nodes to nesting level weights, ϕ maps nodes to node weights, and ⊕ is the overriding

operator for finite functions. Since loops are usually executed multiple times, nodes in nested

loops should have more impact on the type of the overall loop. Thus, nodes which belong to

inner loops are given a higher weight via the function wn : N→ R which maps nesting levels

to weights.

On completion of the breadth-first traversal, the dominant type of the loop l is πl, where

@π s.t. M(π) > M(πl). In case of a tie, a simple heuristic is used (e.g. number of control-flow

nodes). The analysis also has a type strength, σ which is simply the weight the type πl over the

sum of all other type weights (M(πl)/
∑

π∈dom(M)
M(π)). This strength is used for typing

nested loops.

Suppose there is a loop l′ which contains the current loop l. If both loops have the same

type (πl′ = πl), it is not beneficial to incur the analysis and optimization code’s overhead

at each iteration of the outer loop. Instead, runtime analysis and optimization is performed

before the outer loop, and eliminate any work done inside this loop. Thus, after the type for
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the current loop, l, is determined, the analysis finds the type for the next largest nested loop,

l′. If there is no such loop, then the analysis adds the current type information to the loop type

map T . If the type of the nested loop (l′) is the same as the current loop (l), then the analysis

adds the current loop, l to the type map and remove the nested loop l′. If the types of the two

loops differ, the analysis takes the type with the higher strength, σ, since it is more likely that

the typing for such a loop is more accurate. Finally, there is a special condition (else if) to

handle nesting where two disjoint loops, l′ and l′′′, are nested inside a loop, l. In this case, the

analysis types the loop l only if the two disjoint loops, l′ and l′′′, have the same type which is

also the same type as the outer loop l.

for all η ∈ BFS(l ∈ L) do
λ :=

∣∣{l′ ∈ L|l′ ⊂ l ∧ η ∈ l′}
∣∣

M ⊕ {π 7→M(π) + wn(λ) ∗ ϕ(η)}
end for
M(πl) = max

π∈dom(M)
(M(π))

σl := M(πl)/
∑

π∈dom(M)
M(π)

if ∃l′ s.t. l′ ⊂ l ∧ @l′′ s.t. l′ ⊂ l′′ ⊂ l ∧ (@l′′′ s.t. l′′′ ⊂ l ∧ @l′′ s.t. l′′′ ⊂ l′′ ⊂ l) then
if (l′, πl′ , σl′) ∈ T ∧ (πl′ = πl ∨ σl′ < σl) then

T := T ∪ {(l, πl, σl)}
T := T \ {(l′, πl′ , σl′)}

end if
else if ∃l′ s.t. l′ ⊂ l ∧ @l′′ s.t. l′ ⊂ l′′ ⊂ l ∧ (∃l′′′ s.t. l′′′ ⊂ l ∧ @l′′ s.t. l′′′ ⊂ l′′ ⊂ l) then

if (l′, πl′ , σl′) ∈ T ∧ (l′′′, πl′′′ , σl′′′) ∈ T ∧ πl′ = πl′′′ ∧ πl′ = πl then
T := T ∪ {(l, πl, σl)}
T := T \ {(l′, πl′ , σl′)}
T := T \ {(l′′′, πl′′′ , σl′′′)}

end if
else

T := T ∪ {(l, πl, σl)}
end if

Figure 2.5 Loop summarization to find dominant type. BFS ignores back edges

As a result of this process, the analysis obtains another control flow graph of the procedure

where nodes are tuples of loops and their types. To distinguish these from control-flow graphs

of basic blocks, they are referred to as attributed loop graphs.
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2.1.1.4 Phase Transitions

Once the analysis has determined types for sections (blocks, intervals, or loops) of the pro-

gram’s CFG, the analysis computes the phase transition points. Recall that a phase-transition

point is a point in the program where runtime characteristics are likely to change. Since sec-

tions of code with the same type should have approximately similar behavior, phase-based

tuning assumes that program behavior is likely to change when control flows from one type to

another. The next section describes the techniques for marking these points in the application.

2.1.2 Phase Transition Marking

Once the phase transitions are determined, phase marks are statically inserted in the binary

to produce a standalone binary with phase information and dynamic analysis code fragments.

These code fragments also handle the core switching. By instrumenting binaries, the need

for compiler modifications is eliminated. Furthermore, by using standard techniques for core

switching, no OS modification is required. Several variations of phase transition marking

have been considered that are classified into three kinds based on whether it operates on the

attributed control-flow graphs, the attributed interval graphs, or the attributed loop graphs. In

all cases, phase marks are placed at the phase transitions.

2.1.2.1 Adding Phase Marks to Attributed CFG

The first class of methods all consider a section to be a basic block (β̄) in the attributed

CFG (CFG). The advantage of using basic blocks is that execution of a single instruction in

a block implies that all instructions in the block will execute (and the same number of times).

This means that the phase type for the section is likely to be accurate and the same as the

corresponding basic block type π ∈ Π, where β̄ is (β,π). This naïve phase marking technique

marks all edges in the attribute CFG where the source and the target sections have different

phase types. As is evident, this technique has a problem. The average basic block size is

small (tens of instructions in the SPEC benchmarks). Phase marking at this granularity could
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result in frequent core switches overshadowing any performance benefit. To avoid this, two

techniques are used.

The first technique eliminates small sections of code. In other words, if the section has less

than a threshold weight as defined by a node weight function, ϕ : N 7→ R. This eliminates core

switching for very small blocks of code. For example, a basic block may consist of a single

instruction. Clearly it would not be cost effective to initiate a core switch so that a single

instruction can execute more efficiently. Basic blocks are usually in the tens of instruction and

often smaller. Even at this size the benefit of switching cores probably does not outweigh the

cost of switching cores. So, better points for phase marks still must be chosen. The second

technique addresses this problem by only marking a section if at least a fixed percentage of its

successors up to a fixed depth have the same type (illustrated in Figure 2.7).

2.1.2.2 Lookahead based Phase Marking

This technique is presented in Figure 2.6 and illustrated in Figure 2.7. The intuition is the

following. If the successors of a section have the same type, it is more likely that a core switch

will be worth its cost. For small loops, when enough successors are considered, nodes begin

to repeat. Thus, if a loop contains predominately one type of blocks, the technique can simply

make a core switch before the loop begins. Furthermore, this technique serves to reduce the

number of phase marks in a program. Since adding each phase mark translates to adding a

small number of instructions to the footprint of the binary and the control-flow path, both the

time overhead and space overhead of the technique will be reduced and will hopefully not

eliminate much of its benefit.

2.1.2.3 Adding Phase Marks to Attributed Interval Graphs

The second class of methods consider sections to be intervals in the attributed interval

graph. Using intervals for phase marking enables us to look at the program at a more coarse

granularity than basic blocks. Even with 1st order interval graphs, the intervals frequently
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Processed Nodes, D
Get Successors to Depth, S : (η, N)→ {B̄}
Lookahead depth: d, Successor threshold: e
Same type count: c, Total count: t
Grouping U = {π 7→ N |∀π ∈ Π}
Node list N = {ν}.
for all p ∈ P do
D = φ
for all (η, π) ∈ (B̄ \ D) do

c← 0, t← 0, S = S(η, d)
for all (η′, π′) ∈ S do

if π′ = π then
c← c + 1

end if
t← t + 1

end for
if c/t ≥ e then
U ⊕ {π 7→ U(π) ∪ {η}
D = D ∪ {η} ∪ S

end if
end for

end for

Figure 2.6 Lookahead based phase marking

capture small loops. This is clearly advantageous for adding phase marks since it is not desired

to have a core switch within a small loop because this would most likely result in far too

frequent core switches. The disadvantage is that interval summarization to obtain dominant

types introduces imprecision in the phase type information. As a result, statically computed

dominant type may not to be actual exhibited type for the interval based on which instructions

in the interval are executed and how many times they are executed.

2.1.2.4 Adding Phase Marks to Attributed Loop Graphs

The third class of methods consider a section to be loops in the attributed loop graph. Us-

ing loops for phase marking has even more advantages than using intervals. Not only does it

allow inserting outside of loops, it also allows better handling of nested loops by frequently
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Figure 2.7 Lookahead based reduction of phase marks

eliminating phase-marks within loop iterations. This is an even more coarse view of the pro-

gram than the interval based technique. Furthermore, since it is an inter-procedural analysis,

transitions across function calls are handled. Just like interval typing, loop typing introduces

some imprecision in the type information.

2.1.3 Determining block types

This chapter and its corresponding evaluation focuses more on developing and evaluating

(1) the various techniques and granularity for determining and marking phase transitions and

(2) the dynamic analysis and optimization techniques. As a proof-of-concept, a simple static

analysis for determining types of basic blocks is used.

This analysis involves looking at a combination of instruction types as well as a rough es-

timate of cache behavior (computation based on reuse distances [11]). Information describing

these two components are used to place blocks in a two dimensional space. The blocks are

then grouped using the k-means clustering algorithm [55].

The accuracy of this approach has been evaluated in combination with the loop based

clustering technique as follows. Blocks are classified into groups by using this simple analysis.

Next, the dominant type of the loops are determined using the algorithm from Section 2.1.1.

This loop typing is compared with the actual observed behavior of the loops.
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In summary, experimentation shows that this technique miss-classifies only about 15% of

loops. As the results show in Chapter 4, this is accurate enough for phase-based tuning. A

more precise analysis (such as lazy grouping which is described in Chapter 6) may simply be

substituted to improve overall performance.

2.2 Dynamic Analysis and Tuning

After phase transition marking is complete, the program binary contains phase marks at

appropriate points in the control flow. These phase marks contain an executable part and the

phase type for the current section. The executable part contains code for dynamic performance

analysis and section-to-core assignment. During the static analysis, this dynamic analysis code

is customized according to the phase type of the section to reduce overhead.

The code in the phase mark either makes use of previous analysis to make its choice of

core types or it observes the behavior of the code section. A variety of analysis policies could

be used and any desirable metric for determining performance could be used as well. In this

section, the lightweight analysis and similarity metric used for evaluating phase-based tuning

is described.

For this case, the code for a phase mark serves two purposes: First, during a transition

between different phase types, a core switch is initiated. The target core is the core previously

determined to be a good fit for this phase type. Second, if a good fit for the current phase type

has not been determined, the current section is monitored to analyze its performance char-

acteristics. The decision about the preferred core for that phase type is made by monitoring

representative sections from the cluster of sections that have the same phase type. By per-

forming this analysis at runtime, phase-based tuning does not require the programmer to have

any knowledge of the target architecture. Furthermore, the asymmetry is determined at run-

time removing the need for multiple program versions customized for each target architecture.

Since the static technique ensures that sections in the same cluster are likely to exhibit similar
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runtime behavior, the assignment determined by just monitoring few representative sections

will be valid for most sections in the same cluster. Thus, monitoring all sections will not be

necessary. This helps to reduce the dynamic overhead of phase-based tuning.

For analyzing the performance of a section, instructions per cycle (IPC) is measured (sim-

ilar to [81, 9]). IPC correlates to throughput and utilization of AMPs. For example, cores

with a higher clock frequency can efficiently process arithmetic instructions whereas cores

with a lower frequency will waste fewer cycles during stalls (e.g. cache miss). IPC is mon-

itored using hardware performance counters prevalent in modern processors. The preferred

core assignment is determined by comparing the observed IPC for each core type.

The technique for determining core assignment is shown in Figure 2.8. The intuition is

that cores which execute code most efficiently will waste fewer clock cycles resulting in higher

observed IPC. Since such cores are more efficient, they will be in higher contention. Thus, the

algorithm picks a core that improves efficiency but aims to not overload the efficient cores.

select(π,δ): best core for phase type π, with threshold δ

C := {c0, c1, . . . , cn} (set of cores)
Sort C s.t. i > j ⇒ f(ci, π) > f(cj, π).
f(ci, π) - the actual measured IPC of block type π on core ci.
d← c0

for all ci ∈ C\{cn} do
θ = f(ci+1, π)− f(ci, π)
if θ > δ ∧ f(ci+1, π) > f(d, π) then

d← ci+1

end if
end for
return d

Figure 2.8 Algorithm for expected optimal core assignment for n cores

This algorithm first sorts the observed behavior on each core and sets the preferred core

to the first in the list. Then, the algorithm steps though the sorted list of observed behaviors.

If the difference between the current and previous core’s behavior is above some threshold,

the preferred core is set to the current core. The intuition is that when the difference is above
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the threshold, executing on the efficient core will save enough cycles to justify taking the

space on the more efficient core. By doing the performance analysis at runtime, this algorithm

for computing the preferred core assignment does not require knowledge of the program or

underlying architecture.
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CHAPTER 3. Analysis and Instrumentation Framework

To evaluate the ideas in this thesis, a custom static binary analysis and instrumentation

framework was developed. In this chapter, a brief overview of this framework is given.

3.1 Disassembly

At the lowest level, the tool uses code and libraries from GNU BinUtils to translate pro-

grams from binary to machine opcodes and operands. Next, a custom analysis converts this

assembly like representation to an object oriented representation of the program.

First, addresses must be converted to labels. That is, instead of knowing that an instruction

may jump to a specific address, the tool must know what instruction this address refers to.

Consider the small example in Figure 3.1. On the left side of this figure, we have the unpro-

cessed assembly representation of the program. On line 4, there is a conditional jump to the

address corresponding to the instruction on line 2. The same code after translation is shown on

the right side of the figure. The figure shows that now, the conditional jump operand is a new

label instead of an address. Also, the target instruction now has a label associated with it.

1 ...
2 add $0x1, %eax
;at address 0x804896ab

3 ...
4 jne 0x804896ab
5 ...

1 ...
2 newLabel1: add $0x1, %eax
3 ...
4 jne $newLabel1
5 ...

Figure 3.1 Conversion from address to labels. The left side shows a few instructions before
conversion. The right shows the same instructions after conversion.
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The tool must also correctly lay out the data sections (e.g. .rodata, .data, and .bss)

including translating address values which occur in these data sections (.rodata and .data)

and special symbols which also occur in these sections (e.g. stderr, stdout, stdin).

This representation is capable of being output as assembly code which is able to be as-

sembled (i.e. converted back to a binary) by a standard assembler. However, the main reason

behind this representation is to enable analysis and instrumentation of the program.

3.2 Analysis

The largest and most complex components of this framework are the various static analysis

techniques. An overview of each of these components is now described.

3.2.1 Control Flow Analysis

The tool includes a range of control flow analysis techniques including intra-procedural

analyses for finding basic blocks and intervals. Further the tool can identify various control

structures (e.g. while loops, do-while loops, if-then, and if-then-else) and, if desired, graphi-

cally present these structures [77]. The targets of calls are also determined in order to perform

inter-procedural loop analysis as is used for phase-based tuning (and other static analysis de-

scribed later).

3.2.2 Abstract Interpretation

Abstract interpretation is a sound static program analysis framework for analyzing pro-

grams with respect to all possible program paths [19].

For example, the analysis may choose to analyze a property such as the sign of values

contained by variables. Consider the example in Figure 3.2. The analysis starts by analyzing

the first block, A, resulting in the state S2 that contains the knowledge that x is positive. Next,

the analysis reaches the branch (in this case an if-then-else structure). Since the analysis knows
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x=-x x++

x=1A

B C

s1

s2

s3 s4
s5

y/=x D

Figure 3.2 Example of simple abstract interpretation based analysis for variable sign.

that the sign of the variable x is positive each branch is analyzed with this information. For

the left path (block B) the sign is flipped (x becomes negative). So, state S3 knows that x will

be negative at this point. For the right path (block C), x is incremented. Since addition of two

positive numbers (1 and x) results in another positive number, x remains positive for this path.

So, state S4 knows that x will be positive at this point. Next, the analysis needs to analyze the

next block, D. To analyze this block, an input state is needed. To create this input state, the

states S3 and S4 (the results for each potential path) must be merged or “joined”. One case

says that x is negative and the other says it is positive. Thus the resulting joined state S5 says

that x may be either positive or negative (or “top” may be used, which means unknown).

This tool contains an abstract interpretation framework for analyzing both sequential and

parallel programs. To implement such an analysis, one simply creates their analysis class

inheriting from a base “Abstraction” class. Then, the user must only implement a few simple

functions, “step” which defines how an individual instruction is analyzed, “join” which defines

how two combine to states, and “equals”, “copy”, and “destruct” methods which have the

standard meaning. For analyzing parallel programs, a “parallelCombine” method must also be

defined which handles merging the results from two threads.

On top of this framework, several specific analyses are provided. This includes analysis

for multi-level cache behavior and cache coherency behavior. Analysis for ILP and cache
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behavior based on reuse distance [11] (described later) are also provided which are similar to

the abstract interpretation based analyses, but do not guarantee soundness.

3.3 Instrumentation

The tool also has the ability to instrument (or modify) the input program. That is, at a point

on the control flow path (assuming enough information is available) user supplied code may

be added.

The main goal of this feature is to output programs that execute efficiently. This is a

major goal since low overhead of instrumentation is crucial to reduce the overhead of phase-

marks for phase-based tuning. Compared to a similar static instrumentation tool, ATOM [80],

binaries instrumented with this tool execute 10 times faster1. This is because this tool uses a

binary instrumentation strategy that is finely tuned for specific optimizions compared to that

of a general strategy used by ATOM. Further, the tool ignores instrumentation for cases where

instrumentation is especially difficult due to insufficient static information.

Instrumentation occurs as follows. The user writes their own (or uses an existing) tool that

chooses points for insertion (similar to ATOM [80] or Pin [54]). Consider the input program

on the left side of Figure 3.3. Suppose the user wants to insert some code before the second

instruction.

For each such insertion point, the user specifies a function name to insert. This function

must exist in a user supplied binary file. Though each piece of code to be inserted is contained

in a function the entire function is not inserted into the resulting binary. The tool inserts the

body of this function along with the necessary context saving and restoring before and after the

inserted code. On the right side of the figure (the output program) the code to be inserted has

been added (toward the bottom) along with the necessary context saving and restoring code

around it.
1These experiments were done by inserting code before every basic block for SPEC CPU2000 benchmarks.
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1 0x80488800: mov %eax,%edx
2 0x80488802: mov 0xef1a2fb3,%eax
3 0x80488807: lea (%edx,%eax,1),%eax

1 0x80488800: mov %eax,%edx
2 0x80488802: jmp $newLabel1
3 0x80488806: nop
4 0x80488807: lea (%edx,%eax,1),%eax
5 ...
6 newLabel1:
7 ; code to save context
8 ; insert function
9 ; code to restore context

10 mov 0xef1a2fb3,%eax
11 jmp 0x80488807

Figure 3.3 Example of binary instrumentation (idea based on fast break-points [41]). Left:
input program. Desired insertion point is before the second instruction. Right:
output program. Instructions from the input program are shaded. The second
instruction was replaced with padding and a jump to the inserted code plus the
replaced instruction.

Now, control flow must be modified to reach this new code. Also, in doing so, the tool

must not “break” indirect branches which occur in the program being modified. The technique

used for solving this problem is similar to the idea of fast break-points [41]. Recall that the

user wanted to insert the code before the second instruction. Notice in the figure that this

instruction has been relocated (original instructions are shaded). In its original place, a jump

instruction is inserted as well as padding to make sure that the modified code takes up the same

space (so that indirect branches still target the correct instruction). This jump target goes to

the context save code which occurs before the inserted function code. Additionally, after the

context restore code (which is after the inserted function code), the relocated instruction and

another jump are inserted. This jump returns back to the point after the relocated instruction. If

desired, call/return could be used instead of jumps and code duplication to potentially improve

cache behavior and space overhead. However, this has the disadvantage of being unable to

optimize the inserted code based on the “caller”.

By analyzing and instrumenting binaries rather than source code, compiler modification

is not required and the analysis techniques are applicable to any binary rather than a single

language or set of languages.
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CHAPTER 4. Evaluation of Phase-based Tuning

The aim of this chapter is to evaluate the five claims made in Chapter 1 regarding phase-

based tuning. First, it was claimed that phase-based tuning requires no knowledge of program

behavior or performance asymmetry. Phase-based tuning is completely automatic and requires

no input from the programmer. In these experiments, workloads are generated randomly and

without any knowledge of behavior of the benchmarks. Second, it was claimed that the tech-

nique allows for transparent deployment. Since the analysis and instrumentation framework

operates on binaries, no modification to compilers is necessary. Furthermore, since standard

techniques are used for switching cores, no OS modifications are necessary. For example, in

these experiments, the standard build scripts and compilers for the SPEC CPU benchmarks are

used with an unmodified Linux OS. Third, it was claimed that with phase-based tuning one can

“tune once and run anywhere”. The static analysis makes no assumptions about the underlying

asymmetry. Since performance analysis and section-to-core assignment are done dynamically,

the same instrumented applications may be run on varying asymmetric systems. The final two

claims are those related to performance: negligible overhead and improved utilization. In the

rest of this chapter, experimental results are used to evaluate these two claims.

First, it is shown that phase-based tuning has low overhead, second, that phase-based tuning

significantly improves the throughput of processes compared to standard Linux scheduler, and

third that it maintains fairness among processes compared to the standard Linux scheduler.

Finally, techniques are compared to show how different variations are applicable for various

scheduling goals.
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4.1 Experimental Setup

This section describes the experimental setup including both hardware and software plat-

forms. It is also discussed how workloads were constructed for these experiments.

4.1.1 System Setup

The system consists of an AMP with 4 cores. This setup uses an Intel Core 2 Quad pro-

cessor with a clock frequency of 2.4GHz. To create an asymmetric system, two cores under-

clocked to 1.6GHz. There are two L2 caches shared by two cores each. The cores running at

the same frequency share an L2 cache. An unmodified Linux 2.6.22 kernel (which uses the

O(1) scheduler) is used with standard compilers. Thus, the transparent deployment benefit of

phase-based tuning is demonstrated.

There are two main benefits of using a physical system instead of a simulated system.

First, porting the implementation to another system is trivial since it does not require any mod-

ifications to the standard Linux kernel. Second, phase-based tuning is analyzed in a realistic

setting. Others have argued that results gathered through simulation may be inaccurate [57].

This is because all aspects of the system are not considered. Therefore, a full system simulator

is desired. This setup is limited in hardware configurations to test. However, this platform is

sufficient to show the utility of phase-based tuning.

The perfmon2 monitoring interface [25] is used to measure the throughput of workloads.

For evaluation purposes, to determine basic block types for the static analysis with little to no

error, an execution profile from each core is used. Using the observed IPC, basic blocks are

assigned types. The difference in IPC between the core types is compared to an IPC threshold

to determine the typing for basic blocks.
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4.1.2 Workload Construction

Many systems receive a nearly constant feed of jobs to run [10]. Improving the overall

throughput of such a system will increase the amount of jobs the machine can complete in

an interval of time. This increase will in turn enable the system to handle larger workload

sizes. Phase-based tuning is targeting these systems, with maximizing throughput as its key

objective. Similar to Kumar et al.[45] and Becchi et al.[9] the workloads range in size from

18 to 84 randomly selected benchmarks from the SPEC CPU 2000 and 2006 benchmark suites.

For example, when testing a workload of size 18 there are 18 benchmarks running simultane-

ously. Such a workload is referred to as having 18 slots for benchmarks. Like Kumar et al.[45]

the system receives jobs periodically, except rather than jobs arriving randomly, workloads

maintain a constant number of running jobs. To achieve this constant workload size, upon

completion of a benchmark, another benchmark is immediately started. If one were to simply

restart the same benchmark upon completion, the same benchmarks may continuously com-

plete if the technique favors a single type of benchmark. Thus, a job queue is maintained for

each workload slot. That is, for a workload of size 18 then there are 18 queues (one for each

slot in the workload). These 18 queues are each created individually from randomly selected

benchmarks from the benchmark suites. When a workload is started, the first benchmark in

each queue is run. Upon completion of any process in a queue, the next job in the queue is

immediately started. When comparing two techniques, the same queues were used for each

experiment. This ensures more accurate capture of the behavior of an actual system.

4.2 Space and Time Overhead

Statically, phase marks (consisting of data and code) are inserted in the program to en-

able phase-based tuning. Since insertion of large chunks of code may destroy locality in the

instruction cache, low space overhead is desired. This section first describes the overhead in

terms of the increase in binary size caused by insertion of phase marks. Also, a phase mark’s
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execution time is added to the execution of the original program. Thus, it must be ensured

that the overhead does not overshadow the gains achieved by phase-based tuning. Therefore,

the time overhead is described in terms of increase in execution time over the uninstrumented

version. Finally, the average number of cycles per core switch is observed for the benchmarks

(this can be thought of as the average cycles between core switches rather than the cost of core

switch in cycles).

4.2.1 Space Overhead

To measure space overhead, the sizes of the original and modified binaries are compared

for variations of phase-based tuning. Table 4.1 shows summary statistics and Figure 4.1 shows

a box plot for the measurements taken from the benchmarks in the SPEC CPU 2000 and 2006

benchmark suites. The box represents the two inner quartiles and the line extends to the min-

imum and maximum points. These results are presented in terms of what percentage of the

instrumented application is made up of phase marks. The trends are expected. As the mini-

mum size increases, space overhead decreases. Similarly, as lookahead depth increases, space

overhead generally decreases. For individual programs this is not always the case because by

adding another depth of lookahead, the percentage of blocks belonging to the same type may

be pushed over the threshold causing another insertion point.

These results confirmed the intuition that less phase marks will be inserted for larger min-

imum sizes and lookahead depths. The results for interval graph-based phase marking are in-

teresting in that they show significantly large increase in binary size. This is primarily because

interval summarization results in the grouping of smaller basic blocks into intervals creating

more sections above the instruction size threshold. The trends in space overhead offer insight

into trends in time overhead.

For the best technique (loop technique with minimum size of 45), there is less than 3%

space overhead. For the same technique there is an average of 20.24 phase marks per bench-

mark where each phase mark is at most 78 bytes.
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Technique
Space overhead of phase marks (in %)

Average Minimum Maximum Std. Dev
BB[10,0] 35.58 0.26 77.29 0.26
BB[10,1] 19.39 0.05 46.54 0.15
BB[10,2] 12.31 0.05 39.46 0.12
BB[10,3] 13.61 0.26 31.51 0.11
BB[15,0] 8.62 0.05 27.43 0.08
BB[15,1] 5.32 0.05 26.18 0.07
BB[15,2] 9.23 0.12 19.58 0.08
BB[15,3] 4.93 0.05 18.74 0.05
BB[20,0] 4.00 0.05 18.35 0.05
BB[20,1] 8.71 0.05 17.75 0.07
BB[20,2] 5.16 0.05 16.70 0.05
BB[20,3] 4.13 0.05 16.70 0.05
Int[30] 18.92 0.48 36.35 0.11
Int[45] 12.15 0.39 26.70 0.08
Int[60] 8.08 0.26 19.33 0.06

Loop[30] 5.69 0.05 32.13 0.09
Loop[45] 3.98 0.05 30.28 0.08
Loop[60] 3.48 0.05 27.71 0.08

Table 4.1 Space overhead of phase marks. BB[n,m]: basic block technique with min. block
size: n, lookahead: m. Int[n]: interval technique with min. interval size: n. As
expected, fine grain techniques tend to have higher space overhead.
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Figure 4.1 Space overhead of phase marks. As expected, fine grained techniques have higher
space overhead. Loop based techniques have the lowest overhead (e.g. 3%).

4.2.2 Time Overhead

To measure the time overhead of phase marks and core switches the following is done.

Instead of the programs switching to a specific core, programs switch to “all cores”. Switching

to “all cores” means that the same API calls are made that optimized programs make, however,

instead of defining a specific core, all cores in the system are given. Thus, the difference in

runtime between the unmodified binary and this instrumented binary shows the cost of running

the phase marks at the predetermined program points. Table 4.2 shows these costs for variable

workload sizes. Figure 4.2 shows results for workloads of size 84.

The trends shown are mostly expected and are similar to those for space overhead. What

makes these results interesting is that in some cases overhead was as little as 0.14%. At first,

it is quite surprising that the loop based technique reduced overhead as much as it did. There

are several reasons for this improvement. First, compared to the interval and basic block

techniques, only loops are considered whereas the other techniques considers many intervals

and groups of blocks which are not loops. On top of this, it considers nesting of loops. Clearly,
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Technique
% time spent in phase marks
36 52 68 84

BB[10,0] 12.46 8.80 8.98 9.04
BB[10,1] 9.46 7.12 8.75 8.30
BB[10,2] 6.45 7.42 8.75 8.36
BB[10,3] 8.31 7.52 7.47 7.01
BB[15,0] 7.31 5.44 6.57 5.53
BB[15,1] 6.16 4.06 5.66 4.61
BB[15,2] 7.31 3.46 5.06 5.59
BB[15,3] 5.16 6.33 5.81 5.47
BB[20,0] 6.30 4.75 5.21 4.18
BB[20,1] 5.30 5.54 5.96 3.87
BB[20,2] 5.59 5.04 6.26 4.24
BB[20,3] 7.16 5.04 6.26 3.56
Int[30] 29.03 18.83 19.42 22.44
Int[45] 19.54 16.55 15.41 16.47
Int[60] 15.13 10.97 10.55 12.33

Loop[30] 0.81 0.69 0.32 0.18
Loop[45] 0.60 0.61 0.64 0.17
Loop[60] 0.29 0.26 0.23 0.14

Table 4.2 Time spent in phase marks. As expected, fine grain techniques tend to have higher
time overhead. However, interval techniques have very high overhead. Loop based
techniques have less than 0.2% time overhead.
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Figure 4.2 Time overhead of phase marks. Gathered using a workload size of 84. As ex-
pected, fine grained techniques tend to have higher time overhead. However, in-
terval techniques have very high overhead. Loop based techniques have less than
0.2% time overhead.

removing an insertion point inside of a nested loop will greatly reduce the number of total

executions of phase marks. Not only does the technique consider nesting, but it also considers

function calls in order to eliminate phase marks in functions that are called inside of loops

thereby eliminating more phase marks from loops. Further optimized instrumentation and core

switching techniques are likely to decrease this overhead even more. Also, tighter integration

with the system scheduler is likely to decrease this overhead as well, but at the expense of

requiring OS modification.

These results show that phase-based tuning has a small overhead both in terms of space and

time, which shows the scalability of phase-based tuning. For long running processes, the over-

heads are likely to decrease further. Since only a small number of blocks need to be monitored

at run-time, long running benchmarks will most likely have more time to take advantage of

the section-to-core assignment determined by phase-based tuning. This is especially the case

for many server applications such as daemons. For example, a web server will determine its

assignment quickly, then be able to make use of this assignment throughout its entire up-time.
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4.2.3 Core Switches

Here the frequency and cost of core switches for each benchmark is analyzed. First, exper-

iments were done to estimate the cost of each core switch. This was done by writing a program

that alternates between cores and then counting the cycles of execution for this program. Using

this technique, it has been determined that a core switch takes approximately 1000 cycles (not

including the potential for additional cache misses caused by the loss of cached instructions

and data). More precise measurement could be done, but this is sufficient to gain insight into

the necessary cycles require to amortize the cost of a core switch. Next, consider core switches

for each benchmark in detail.

Benchmark Switches Runtime (s)
401.bzip2 (2006) 4837 364

410.bwaves (2006) 205 33636
429.mcf (2006) 15 872

459.GemsFDTD (2006) 0 3327
470.lbm (2006) 99 1123
473.astar (2006) 0 55

188.ammp (2000) 3 67
173.applu (2000) 205 3414

179.art (2000) 3 46
183.equake (2000) 7715 62

164.gzip (2000) 3 23
181.mcf (2000) 6 58

172.mgrid (2000) 2005 172
171.swim (2000) 3204 5720
175.vpr (2000) 6 46

Table 4.3 Switches per benchmark (Loop[45], 0.2 threshold)

In Table 4.3 the number of core switches and runtime (in isolation) for each benchmark

is shown. This table shows that most programs change phase types occasionally throughout

execution. Some programs differ in that they have few or only one phase according to the static

analysis. These benchmarks, aside from choosing the best core to execute on, mostly stay on
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the same core. Finally, two benchmarks (459 and 473), do not have any phases at all. These

benchmarks will simply execute on any core the OS deems appropriate.
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Figure 4.3 Average cycles between core switches

Figure 4.3 presents the average number of cycles per core switch (log scale). Most bench-

marks fall in the range of tens of billions of cycles per core switch which is clearly enough

amortize the switching cost.
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4.3 Throughput

To test the hypothesis that “phase-based tuning will significantly increase throughput”,

phase-based tuning is compared to the stock Linux scheduler (for the same workloads run

under the same conditions). Throughput was measured in terms of instructions committed

over a time interval (0% representing no improvement). Variations of phase-based tuning and

its algorithm’s variables are compared. As mentioned previously in Section 4.1, workloads

consist of a fixed number of processes running simultaneously. For all figures presented in this

section, the data is taken from the first 400 seconds of the workload execution.

It is important to note that the measurements for throughput include the instructions in-

serted as part of the phase marks. This code is efficient and is likely to skew the measurements.

Nevertheless, throughput is considered in order to measure the impact of several variables in

phase-based tuning. For example, with the same technique, variations in the threshold used to

determine core assignment will result in a minor impacts to the throughput by the extra instruc-

tions in phase marks. Thus, throughput still gives insight into how variables in the technique

impact performance.

A better picture of how this technique improves performance is given by the average pro-

cess time. Average process time also incorporates some level of fairness, these results are

given in the next section.

4.3.1 IPC threshold

First, consider how the IPC threshold affects throughput. As mentioned in Section 3, IPC

threshold is used to determine the section-to-core assignment. Figures 4.4 and 4.5 show how

different threshold values affect throughput when all other variables are fixed (technique, min.

size, lookahead, etc).

These results are as expected. Extreme thresholds may show a degradation in throughput

because the entire workload eventually migrates away from one core type. Between these
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Figure 4.4 Throughput improvement: Basic block strategy, min. block size: 15, lookahead
depth: 0, variable IPC threshold

Figure 4.5 Throughput improvement: Interval strategy, minimum interval size: 45, variable
IPC threshold

extremes lies an near optimal value. Near optimal thresholds result in a balanced assignment

that assigns only well-suited code to the more efficient cores.

4.3.2 Clustering error

Statically predicting similarity will have some inaccuracy. Thus, Figure 4.6 shows how

phase-based tuning performs with approximate similarity information. The same variables as

Figure 4.4 are tested but with error levels ranging from 0% to 30%. For these tests, since there

are two core types, a perfect assignment (0% error) consists of two clusters, one for each core

type. To introduce this error, after determining the clustering of blocks, a percentage of blocks

were randomly selected and placed into the opposite cluster. The result is that blocks expected

to perform better on a “fast” core are run a “slow” core and vice versa.

These results show that phase-based tuning is still effective with approximate block clus-

tering. With a 10% error there is almost no loss in performance and with 20% error there is

still a significant performance increase. At 30% error there is little performance improvement.
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Figure 4.6 Throughput improvement: Basic block strategy, min. block size: 15, lookahead
depth: 0, variable error

4.3.3 Minimum instruction size

Now, it is shown how minimum instruction size affects throughput for the three techniques.

Figure 4.7 shows this comparison. The results are expected and similar to those for lookahead.

Considering smaller blocks, intervals, and loops generally results in higher throughput. This

is for the same reasons as lookahead depths, however, with larger minimum instruction size

small loops may be ignored that are executed frequently. As mentioned previously, this im-

provement must be balanced with overhead costs which were discussed in Section 4.2. Also,

recall that throughput includes instructions inserted in phase-marks, thus the throughput results

are skewed.

Figure 4.7 Throughput improvement: variable technique and minimum size
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4.4 Fairness

Improved throughput is advantageous, however, in many systems fairness is also desired.

Therefore, the fairness of phase-based tuning is analyzed. First, the fairness metrics are de-

scribed followed by the measurements and a brief discussion.

Three metrics are used to analyze fairness:

• max-flow,

• max-stretch, and

• average process time.

Max-flow and max-stretch were developed by Bender et al. for determining fairness for con-

tinuous job streams [10]. Now, max-flow and max-stretch are briefly defined.

For each process, the following data is gathered:

• ai: arrival time of process i,

• Ci: completion time of process i, and

• ti: processing time of process i (in isolation).

First, max-flow is defined as

max
j

Fj,

where Fj = Cj − aj

This is basically the longest measured execution time. So, if even one process is starving, this

number will increase significantly. Second, max-stretch is defined as:

max
j

Fj

tj

This can be thought of as the largest slowdown of a job. This is considered because it is

desired that processes speed up, but not at the expense of others slowing down significantly.

These measurements for variations of phase-based tuning are shown in Table 4.4.
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Technique
% decrease over standard Linux

Max-Flow Max-Stretch Avg. Time
BB[10,0] -10.75 -17.87 14.57
BB[10,1] -28.89 -26.44 0.74
BB[10,2] -51.21 -16.73 -9.34
BB[10,3] -43.19 -1.63 -8.78
BB[15,0] 17.01 0.65 23.65
BB[15,1] 18.33 13.29 25.73
BB[15,2] -27.81 -12.19 -4.08
BB[15,3] -36.51 -24.13 7.11
BB[20,0] -39.55 -84.33 -10.35
BB[20,1] -17.27 -34.65 28.42
BB[20,2] -41.54 -56.90 22.88
BB[20,3] -56.41 -48.46 9.00
Int[30] 3.86 -11.50 9.69
Int[45] 39.15 32.78 28.60
Int[60] -27.36 13.80 27.38

Loop[30] 3.24 6.54 14.86
Loop[45] 12.04 20.41 35.95
Loop[60] -16.10 17.57 10.40

Table 4.4 Fairness Comparison to standard Linux assignment: Improvements are shaded.
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The best technique shows the following benefits over the stock Linux scheduler.

• 12.04% decrease in max-flow,

• 20.41% decrease in max-stretch, and

• 30.95% average decrease in process completion time.

These results were gathered over an 800 second time interval using the loop based technique

with minimum size of 45 and IPC threshold of 0.15.

4.5 Analysis of Trade-offs

The previous results have shown that phase-based tuning has clear advantages over the

stock Linux scheduler while maintaining fairness. However, the goal of a scheduler varies

based on how the system is used. Some systems desire high levels of fairness while others

are only concerned with throughput. It may also be the case that a balance is desired in-

stead. Therefore, it is important to analyze the trade-off between fairness, average speedup,

and throughput. In this section these trade-offs and how different variations of phase-based

tuning perform with specific scheduling needs are discussed.

Here, the trade-off between speed and fairness is examined. Speedup refers to the decrease

in average process run-time. Max-stretch is used for fairness. Figure 4.8 shows this trade-off

for different variations of phase-based tuning.

These results show that a balance between the two exists. The interval and loop techniques

perform quite well at balancing these two metrics. Many variations show significant increases

in speedup, but at a loss of fairness.

4.6 Summary of Results

In closing, these results show that phase-based tuning significantly outperforms the stock

Linux scheduler in terms of the throughput obtained on an AMP, while maintaining fairness



www.manaraa.com

47

Figure 4.8 Speedup vs fairness: average time vs. max stretch

and with a negligible overhead in most cases. In particular, the loop based technique balances

throughput and fairness significantly well achieving an average process speedup of up to 36%.

Phase-based tuning thus shows its potential in improving the utilization of AMPs.
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CHAPTER 5. Practical and Future Use of Phase-based Tuning

This chapter discusses some issues that although not central to phase-based tuning, are

relevant for its practical or future applications.

5.1 Applicability to Multi-threaded Programs

The simplicity of phase-based tuning allows it to immediately work on multi-threaded

applications. Recall that binaries are modified by inserting code. When an application spawns

multiple threads, it is essentially running one or more copies of the same code which was

present in the original application. The framework will have analyzed this code and modified

it as needed. Thus, each thread will contain the necessary code switching and monitoring code

present in the phase marks.

Furthermore, the cache performance impact of code sharing across threads will be handled

as well. For example, suppose two identical threads are running. One of the two will pick an

assignment based on its observed behavior. Since the code is identical, the other thread will

then have the same assignment decision. Thus, its preferred core type is the same as those with

shared code.

If the threads share some data rather than code, it is expected that a similar situation will

happen. For example, the first thread will pick its desired core type. Next, the other thread,

while picking its core type, will likely see improved performance when executing on a core

that shares cache with the first thread due to increased cache hits. Thus, it is more likely to

chose core types which result in better cache behavior.
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5.2 Changing Application and Core Behavior

Recall that the workload on a system may change the perceived characteristics of the in-

dividual cores. Furthermore, program behavior may change itself periodically (e.g. warm-up

phase). While not addressed explicitly in this thesis, solutions for these problems only require

minor modifications to the techniques presented here.

Dealing with changing program behavior is trivial. For example, a warm-up phase is usu-

ally caused by one of two things. First, different code may account for the warm-up phase

such as an I/O section of code before the computational portion. This is the easier case and is

already handled by phase-based tuning since these two phases are in separate code sections.

The second cause is best illustrated by considering compulsory (or cold) cache misses. For

example, the first time some code is executed, the data it operates on is not in cache. However,

upon each successive execution, the data is likely in the cache. This case is easily handled with

phase-based tuning by simply ignoring the first execution of each block.

Handling changes in the system behavior due to workload changes is slightly more com-

plex. For short running programs, this is not likely to be an issue since the program may finish

(or mostly finish) before behavior changes. Furthermore, assignment is re-computed for each

program run so a poor assignment will be short lived. However, for long running programs

such as a web-server, a poor assignment would last far too long. To address this issue, a simple

feedback mechanism is needed to re-assess core mappings periodically. For example, after

some amount of time, the dynamic analysis code would begin monitoring blocks again to as-

sess and possibly modify the current assignment strategy. More complex schemes could be

implemented as well which look at processes entering and leaving the system as well as phase

transitions in other processes.

In summary, by not actually looking at the hardware characteristics, phase-based tuning

handles the changes in each cores behavior that occurs based on other processes in the system.
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5.3 Floating Point Emulation and IPC

Using IPC as a metric for performance poses a few problems. For example, a core without

a floating point unit may do floating point emulation which will result in many potentially fast

instructions being executed in place of one slow floating point instruction. As a result, the IPC

of a floating point intense section of code running on a core with floating point emulation may

give a high IPC. However, it is clear that a core with a floating point unit is more desirable. To

address this issue, calculation of IPC can be done as follows. Cycles for a section can still be

determined using performance counters. Then to determine instruction count, a combination

of static analysis and code instrumentation can be used to embed the number of instructions

(determined by counting actual floating point instructions not emulated instructions) into the

code for calculating IPC. In this case, care must be taken to avoid excessive overhead of the

instrumentation code.

5.4 Scalability for many-cores

While the current implementation performs well for multi-core systems, there is a potential

scalability issue for many-core machines since each core in the system would need to be tested

for each cluster. To address this issue the following is proposed. First, it is expected that for

asymmetric many-core systems, the number of core types is still likely to be small 1. Thus, if a

grouping of the cores into types is known the problem may largely be reduced to one similar to

a multi-core system thus avoiding this scalability issue. There are several options for producing

such a grouping. One option is to manually determine it based on the processor specification.

Another option is to automate the process using carefully written test programs which are

run before jobs are sent to the system. These programs will monitor their performance on

several cores and determine a grouping of the cores. Care must be taken to ensure that the test

programs expose all potential differences which may impact performance.

1Previous work seems to suggest situations where as few as two cores types is sufficient [44, 33].
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CHAPTER 6. Lazy Grouping

An overview of lazy grouping is now given. Lazy grouping consists of three major steps in-

cluding both compile and install time analysis. After the overview, each step will be described

in detail.

Compile
Time

Program
Install

Program {(L1,M1),...,
  (LM,MM)} 

G1={La,...,Ly}
    ...
GN={Lb,...,Lz}

OS/Machine
Install

Training Set

Neural Net.

Notation
Li  =  Loop i  
Mi =  Metric set i
Gi = Group i 

Figure 6.1 Lazy Grouping. At compile time, static analysis computes behavior metrics for
each loop. At OS install time, a neural network is trained for the current machine.
At program install time, the metrics (computed at compile time) are sent to the
neural network which computes the groups.

Compile Time . At compile time, static analysis is used to approximate metrics of pro-

gram behavior (e.g. cache behavior, instruction type, etc.). As many metrics as are desired

may be analyzed since this analysis only happens once per program and the results are used

for all target machines. The bottom left of Figure 6.1 shows that the compile time portion takes

as input a program and outputs a set of pairs each consisting of a loop and its corresponding

metric sets.

OS/Machine Install Time . At OS or machine install time, a neural network is trained

for the current machine. The training is done, only once per machine, using a given training
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set. The top of Figure 6.1 shows that the OS/machine install time component takes as input the

training set and output a neural network. Like the output of the compile time step, the training

set consists of pairs of loops and their metrics. To determine the desired network outputs, each

loop in the training set is run on the current machine and its behavior observed.

Program Install Time . At program install time, the metrics for the program (computed

at compile time) are submitted to the neural network (trained at OS install time) to compute

the grouping. This grouping is called “lazy” since it waits till the target machine is known

instead of grouping immediately after computing the metrics. The bottom right of Figure 6.1

shows that loops and their metrics (from compile time analysis) along with the neural network

(generated at OS install time) are input. The output of this step are the groups for the loops of

the input program for this machine.

Each of these components is now described in detail.

6.1 Compile Time – Computing Similarity Metrics

To determine behavior similarity between program segments static analysis is used to ap-

proximate several behavior metrics. Since this happens only once per program regardless of

the target machines, the analysis must analyze enough metrics such that they may approximate

the behavior of each segment on any target machine (that uses the same instruction set). Fortu-

nately, the analysis can afford to spend this effort analyzing the program since it must only be

done once and it is static. This means that anyone installing the program need not spend any

resources analyzing the program and its behavior.

For example, on the left of Figure 6.2 a simple input program is shown containing two

loops. The static analysis labels these loops and computes a set of metrics for each. Here, the

focus is on analyzing loops which were shown to be the most effective granularity for phase-

based tuning. In the case of loop nesting, each nesting level is analyzed separately in order to

provide the necessary type information to the phase-based tuning optimization algorithms.
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for(i=0:n)
  foo();
for(i=0:n)
  bar();
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Compile
Time

Program 
Install Time

Behavior Metrics

Figure 6.2 Compile and program install time: At compile time, loops and behavior metrics
are determined. This information, along with the program, is sent to each machine.
At program install time, a neural network computes grouping.

An overview of the behavior metrics statically computed for the evaluation of lazy grouping

is now given. These metrics are a reasonable subset of those necessary to approximate behavior

in order to demonstrate the utility of the approach. In practice, more metrics could be used

based on the users needs. Note that adding more metrics does not increase the number of

required groups.

6.1.1 Instruction Latency

The first metric estimates instruction execution times. Since lazy grouping should work for

a wide range of target cores all with potentially different implementations of operations (some

with in-order and some with out-of-order execution and other issues like memory accesses) it is

not possible to compute how long an instruction will take. However, an analysis may estimate

that some instructions will take longer than others (e.g. division takes longer than addition).

Thus, the goal becomes estimating some measure of execution time which correlates with

behavior on at least most target cores.

Several options for this measure were explored including instruction type groups (e.g.

arithmetic, data transfer, shift, floating point, etc.) and estimations derived from monitoring
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behavior of programs on modern architectures [32]. The most effective technique found was

using the cycle counts on 486 CPUs from an instruction reference [76]. These cycle counts

also take into account the operands involved. For example, an instruction accessing memory

will likely take longer than the same instruction accessing only registers.

6.1.2 Instruction Cache

Cache behavior is an important aspect of similarity detection. As the gap between CPU

speeds and memory speeds widen, the result is that accessing main memory can take thousands

of cycles on some machines [34]. Clearly this presents a large range of potential costs for

executing a memory operation.

Therefore, the next metrics are several rough static estimates of instruction cache behavior.

This includes an analysis of both the best case and worst case behavior for simple caches with

several degrees of associativity. The predicted “hit rate” (percentage of accesses that will be in

cache when requested) for each analysis is used.

The theory behind this analysis is based on previous work by Ferdinand and Wilhelm [27].

The basic idea is to use abstract interpretation [19] (a sound static analysis framework) to

model the cache replacement policy (e.g. least recently used (LRU)) in cache sets. The best

and worst case proximity to eviction is tracked for each block potentially in cache. The analysis

implementation is based on previous work [78] for more precisely analyzing cache hierarchies.

6.1.3 Data Cache

Since instruction cache behavior is only part of the cache behavior of a program, approxi-

mate data cache behavior is also analyzed. The idea is to statically analyze reuse distances of

data accesses [11].

Reuse distance refers to the number of unique accesses between the current accesses and

the previous access to the same location. However, since this is a static analysis, instead of

looking at execution profiles, it analyzes instruction operands to compute an approximate best
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case reuse distance. This reuse distance is then used to place each access into a bucket of

similar data accesses (e.g. all accesses with a distance between 22 and 23 are put in the same

bucket). This is similar to part of the MICA technique for clustering whole benchmarks [36].

Six buckets are used which collect accesses within a specific range – [0, 20), [20, 21), . . . , [25,∞).

The average (per instruction) number of accesses in each bucket is used.

6.1.4 Instruction Level Parallelism (ILP)

Instruction level parallelism has been used for many years now to improve program perfor-

mance (especially with the smaller increases in CPU clock speeds) [34]. Since ILP has become

rather heavily relied on for improving performance by hardware manufacturers [34], it impact

on program behavior is likely to vary, especially when comparing simple and complex archi-

tectures (e.g. consider the out-of-order Intel i7 and the in-order Intel Atom).

Therefore, rough static approximations of ILP are also included. Similar to the cache reuse

distance analysis, the operands for each instruction are analyzed Again, only static approxima-

tions are used.

For each register and memory location accessed by each instruction the analysis performs a

backwards search for dependencies. This includes register dependencies (e.g. if an instruction

reads or writes a register value written by a previous instruction) and memory dependencies

(e.g. the same as register dependency, but with memory locations).

A worst case analysis is used, however, it does not look at some forms of dependence such

as blocking of functional units. For example, suppose there are two potential paths leading

up to an instruction that reads some register. In one path, there are two instructions until the

closest dependence. In the other, there are four instructions until the closest dependence. In

such a case, the analysis considers the worst-case distance to be two.

Like the data cache analysis, each instruction is placed into one of five buckets depending

on the distance (in instructions) to the worst-case previous dependency.
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6.1.5 Loop Size

The final two metrics are simple and look at loop size in terms of total instruction count and

basic block count. These metrics on their own do not necessarily predict behavior well. How-

ever, they provide some assistance to predicting behavior when combined with other metrics

(as determined by feature selection).

6.2 OS/Machine Install Time – Network Training

At OS or machine install time, a neural network is trained for the machine. This neural

network is then used for grouping the loops for all programs to be optimized for this machine.

A neural network (or artificial neural network) is a model that mimics certain aspects of

a biological neural network (i.e. a brain) [70]. This network has layers. The first and last

layers of the network are called the input and output layers respectively. The layers in between

are called hidden layers. Data is fed into nodes in the input layer. Data is passed through

the network where each node takes inputs from the previous layer, multiplies each by some

weight, aggregates the result, and passes the result through an activation function. To give

desired outputs, the network is trained using a training set consisting of inputs and desired

outputs. This training set is repeatedly sent through the network. Each time, weights are

adjusted to bring the actual outputs closer to the desired outputs. This continues until a desired

error rate is reached.

For lazy grouping, the size of the input layer is equal to the number of similarity metrics

that were analyzed. Experimentation has found that networks with three hidden layers, each

roughly the same size as the input layer, appear to work best. Various activation functions have

been tested. While periodic functions (e.g. sin, cos) help achieve the desired error rate more

quickly, the output network is much less accurate than networks using the sigmoid logistic

function or similar approximations. The size of the output layer is equal to the number of

desired groups (e.g. approximately the number of core types in an AMP). For example, in
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Figure 6.3 the network has two output nodes. This means that loops will be divided into two

groups. Each node in the output layer computes a probability that the input belongs to the

corresponding group. For example, if there are two output nodes, n1 and n2 the input loop

belongs to group c1 if out(n1) > out(n2) where out gives the output value from a node.

Training 
Set

Behavior 1 Behavior N

Neural 
Network 
Trainer

Execute

Neural 
Network

... ...

Loop 1

Metrics 1

Loop N

Metrics N

Figure 6.3 OS install time. The training set is supplied to the machine. Loops are executed
and their behavior is gathered. Desired outputs, for training, are computed from
this observed behavior.

The training set consists of a set of benchmarks and precomputed metrics for the loops in

each benchmark (shown on the left of Figure 6.3). Each loop is a single training example in

the training set. These metrics for each loop make up the inputs of each member of the training

set. Recall that the outputs of the network are probabilities for which group the loop should

belong to. Thus, the analysis needs a way to determine, for each loop in the training set, which

group is ideal.

To determine the desired groups, execution behavior is monitored for each loop (top right of

Figure 6.3). To do so, each loop is instrumented to gather performance data. After execution,

the behavior of all executions (e.g. nested loops which executed many times) are averaged.

Suppose the performance data gathered was IPC and that two groups are desired. Then, a

single threshold IPC is used (if n groups are desired, n − 1 thresholds are used). Any loop

whose IPC is above this threshold goes in one group. The others, go in the other group. For
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application to AMPs, the difference in IPC between core types is used to determine grouping.

To avoid over-fitting, values that lie within some small distance, ε, from the threshold(s) are

set with equal probability for the groups on either side of the threshold. For example, suppose

there is a threshold of 0.5 and that two loops have IPCs of 0.49 and 0.51. It probably makes

sense for these loops to be considered similar (and they likely have similar metric values).

Informing the neural network otherwise may hurt accuracy. In experiments, ε ranges from

0.01 when cores only differ in frequency to 0.03 for cores with significant differences (or for

single core type grouping). These values avoid over-fitting loops which lie directly on either

side of the threshold while at the same time avoid capturing too many loops as being fit for

either group.

Once the desired output for each loop is determined, the network is trained (shown on the

bottom right of Figure 6.3). This entire step is lengthy due to gathering the observed behavior

of each loop. Fortunately, it only needs to be done one time, when the machine is being set up.

Throughout the entire lifetime of the machine, the same network may be used. Additionally, it

would be reasonable that users could obtain a network that has been pre-trained based on their

machine configuration.

One can influence the group distribution through the training set. This means the distribu-

tion of groups can be tuned based on the target optimization. For example, suppose the target

optimization is phase-based tuning for an AMP with two core types (fast and power efficient).

If the desired behavior is efficient power use, the analysis only puts segments in the “fast”

core’s group when the benefits of doing so are large. With a k-means clustering based tech-

nique, one must rely on what distribution is produced causing potentially undesirable use of

the system.
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6.3 Program Install Time – Grouping

The final step, grouping, happens at program install time (when the program is placed on

the target machine). This step only happens once per benchmark per target machine.

This process is illustrated on the right of Figure 6.2. The neural network used to compute

the grouping was already created at OS/machine install time. Thus, the analysis simply sends

the metrics computed at compile time to the neural network. A benefit is that groups are

computed very quickly, though this is not necessary since it occurs statically.

Unlike a compile time grouping, where the behavior of the loops in each group is unknown,

lazy grouping knows approximately the expected behavior of the loops in each group. That

is, that they likely behave above or below some threshold(s). This gives a tremendous benefit.

Thus lazy grouping no longer requires, or can at least simplify, runtime analysis.

6.4 Summary of Benefits

Lazy grouping has several benefits.

• It can tackle a wide range of target machines since, by delaying grouping until install

time, the output is a grouping tuned for the target machine.

• Phase-based tuning is more efficient for three reasons. First, users can specify the num-

ber of groups to use without losing accuracy. For example, for an AMP with two core

types, two groups can be used. Second, users can influence the relative size of groups.

For example, if an AMP has a skewed set of core types, more extreme thresholds can

be chosen when training the network resulting in skewed group sizes. Third, no runtime

monitoring and analysis is required to make decisions dynamically since lazy grouping

knows if segments are likely to behave above or below some threshold.

• Typical use of the approach is efficient since most of the overhead occurs at compile

time (computing metrics) and OS/machine install time (machine setup).
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CHAPTER 7. Evaluation of Lazy Grouping

The hypothesis is that lazy grouping will produce accurate groupings (>80% accuracy) for

the target machines (all that were accessible). Further, it is hypothesized that lazy grouping

will produce more accurate groupings than compile time grouping and result in more effective

application of phase-based tuning.

To evaluate these hypotheses, benchmarks are run on a wide variety of machines to observe

their actual behavior. This actual behavior is then used to separate loops in these benchmarks

into groups to determine perfect grouping information. Groupings are computed using lazy

grouping and the results are compared with perfect groupings to determine accuracy along

four dimensions: raw accuracy, group accuracy, statistical test p-value, and visual analysis.

7.1 Experimental setup

The experimental setup including how behavior is determined for target configurations,

hardware and software setups, and techniques used to determine accuracy are now described.

7.1.1 System Setup

All systems used for this experimentation are physical systems running GNU/Linux. Fig-

ure 7.1 shows all core types used in this experimentation. Modern processors (e.g. Core i7,

Opteron 6168) are included as well as power efficient processors (e.g. Atom, Pentium M),

older processors (e.g. Pentium 4), and some in between. For each core type, frequency was

varied (if possible) as well, creating a wide range of core types.
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Series and Frequencies L1 (i/d) L2 L3 Cores
Model (GHz) (KB) (KB) (MB)

Core i7, 870 1.2,1.6,2.0,2.41,2.93 32/32 4x256 8 4/8
Atom, N270 0.8,1.6 32/24 512 1/22

Core 2 Quad, Q6600 1.6,2.4 32/32 2x4096 4
Core 2 Duo, E6300 1.6,1.83 32/32 2048 2

Pentium 4, 2.0 2.0 12K3/8 512 1
Pentium M, 725 0.8,1.6 32/32 2048 1
Opteron, 2431 0.8,1.2,1.5,1.9,2.4 64/64 6x512 6 6
Opteron, 6168 0.8,1.3,1.9 64/64 6x512 12 12

Table 7.1 Core types used for evaluation. All L1 caches are private for a single core and
split (instruction and data caches are separate). For cores with hyperthreading, the
number physical cores and total threads are shown.

The benchmarks used in this evaluation are the benchmarks from the SPEC CPU 2000

benchmark suite4. This suite is used since it runs in a reasonable amount of time under fine

grained monitoring on all target machines.

The Fast Artificial Neural Network Library (fann) [65] is used for constructing and training

the neural networks. In these experiments, a grouping for each individual benchmark is com-

puted. To do so, a technique called leave-one-out cross-validation [70, pp.663] is used. That

is, when computing a grouping for a single benchmark, the network is trained using the rest

of the benchmarks (i.e. the current benchmark and all its loops are excluded from the training

set). Further, also excluded are all runs of the same benchmark under different input where

such alternate input sets exist.

7.1.2 Computing Actual Behavior for Evaluation

Behavior is gathered using PAPI [22]. The custom program analysis and instrumentation

framework described in Chapter 3 detects loops and inserts the appropriate PAPI calls. When

1Actually 2.39GHz, but rounded for clarity.
2Uses in-order execution.
3Uses a 12K µop trace cache which behaves similarly to an 8-16KB i-cache [71].
4excluding perlbmk, gcc, eon, fma3d, and sixtrack which either do not execute or analyze properly
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sufficient information is unavailable to safely instrument or detect a loop, it is ignored. For

loops executed multiple times, the average of the executions is taken.

Both individual core behavior and difference in core behavior in asymmetric configurations

(as used by phase-based tuning) are considered. For asymmetric configurations, difference in

behavior is approximated using two core types, sometimes in different systems. While some of

these AMPs do not exist and other characteristics of each machine may differ, the difference

in behavior is representative of some potential AMP. Asymmetric configurations with two

core types are used because previous work suggests that two types are sufficient to realize the

benefits of AMPs [44, 33].

7.1.3 Accuracy Metrics

To determine the accuracy of a grouping, several techniques are used. Each technique is

now described.

Raw Accuracy . Raw accuracy is the percent of loops which “fit” in their group. For

example, suppose there are two groups both containing five loops (10 loops total). Suppose all

loops are correctly grouped except one (ideal grouping is determined in the same way training

sets are created for the neural network). This group has 90% raw accuracy. A random grouping

will give, on average, 50% raw accuracy.

Group Accuracy . Suppose there are two groups, one with eight loops, the other with

two. The group with eight loops is completely accurate (100%) whereas the other is entirely

incorrect (0%). In this case, the group accuracy is 50% (i.e. each group gets equal weight

regardless of its size). This case would be reported as 80% accurate with the raw accuracy

metric. This case could occur if one were to choose an extreme threshold and cause the size of

one group to become very small. Simply placing all loops in the larger group will give a high

raw accuracy. Group accuracy solves this problem by giving a 50% group accuracy. Similarly,

a random grouping will on average give a 50% group accuracy.
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p-value . The p-value for the statistical test where the null hypothesis is that the two

groups have the same mean is also considered. A sufficiently low p-value (e.g., < 0.05)

will reject this hypothesis. That is to say that the two groups have a statistically significant

difference in their means.

Boxplots . Finally, a visual analysis using boxplots which help illustrate the distribution

of data is used. Consider the left of Figure 7.2. The boxes represent the inner quartile range.

The lines on either end extend to the minimum and maximum of the data set excluding outliers

(shown as circles). The line in the middle of the box represents the median. For lazy grouping,

ideally, there would be no overlap between groups. However, a good grouping should at least

not have the boxes (i.e. inner quartiles) overlapping.

7.2 Compile Time vs. Lazy Grouping

The evaluation in this section demonstrates that lazy grouping is more accurate and requires

significantly fewer groups than compile time grouping. This section also shows that lazy

grouping outperforms a compile time grouping tuned for the target machine

For comparing the accuracy of the techniques, each core type is considered as well as

asymmetric configurations containing the two most different core types (i7 and Atom). For

these asymmetric configurations, the most different frequencies are used (e.g. i7 at 2.93GHz

and Atom at 0.80GHz).

7.2.1 Universal Compile Time Grouping

For this compile time grouping, the same metrics as lazy grouping are used except two (the

second highest data cache bucket and the second highest ILP bucket). These two metrics were

considered irrelevant by feature selection for all configurations. Additionally, all metrics were

scaled to be in the range [0 − 1] in order to give each metric equal weight. Finally, k-means

clustering is applied to the resulting data set.
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Figure 7.1 shows the raw accuracy of the two techniques for several configurations. Bars

are labeled with the minimum number of groups needed to achieve this accuracy. Of course, a

grouping applicable to all machines would have fixed groups. For these experiments, accuracy

is the same as the presented data when increasing groups up to 200.

Figure 7.1 Compile time vs lazy grouping. Numbers on bars are the minimum number of
groups required to achieve this accuracy. 50% accuracy denotes random grouping.
The figure also shows that lazy grouping performs significantly better.

The figure shows that accuracy for lazy grouping is significantly better than compile time

grouping. On average, lazy grouping improves raw accuracy by 17%. Therefore, dynamic

optimizations receive more accurate behavior knowledge and thus can make more effective

decisions. Lazy grouping, on average, needs one sixth of the groups which helps reduce run-

time analysis overhead (if required).

7.2.2 Target Machine Specific Compile Time Grouping

One could use a compile time approach and modify the weights on each similarity metric

for each target machine. Unfortunately, this either involves significant expertise or exploration

of a large parameter space. A major problem is that the relationships between metrics may

not be straightforward. Consider ILP metrics whose impact depends on several other factors
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like cache behavior, branching, etc. Even using automated techniques, searching this huge

parameter space for an optimal configuration is not feasible.

Consider this approach for the two most different cores (i7 and Atom). Using feature

selection, it was determined that a combination of instruction latency and cache behavior works

well. In this case, estimated cache behavior combines instruction and data cache buckets with

different weights.
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Figure 7.2 Grouping using k-means at compile time. Left: Intel i7 @ 2.93GHz with Intel
Atom @ 0.80GHz. Right: Intel i7 @ 2.93GHz with Intel i7 @ 1.20GHz.

The result is a grouping technique which gives 81% raw accuracy with only two groups

(group distribution is shown on the left of Figure 7.2) which is better than the previous compile

time grouping not tuned or this machine which achieved 80% raw accuracy but required 13

groups. However, lazy grouping still performs better at 94% accuracy for this configuration.

Lazy grouping also has the benefit of being purely automatic. Finally, note that using this
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technique tuned for this specific machine gives random, or nearly random, groupings for other

machines. For example, the right side of Figure 7.2 shows that there is no difference in the

groups for an AMP consisting of two i7 cores (p-value is 0.88).

7.3 Accuracy of Lazy Grouping

In this section, the accuracy of lazy grouping is demonstrated for a wide variety of core

types and asymmetric configurations.

Asymmetric configurations were chosen for a variety of reasons. Some were chosen be-

cause they combine recent high power cores with power saving cores (e.g. i7 with Atom or

Pentium M). Others were chosen because they have the similar clock frequency but differ in

other (known or unknown) ways (e.g. Core 2 Quad and Opteron). Finally, some configurations

were chosen which differ only in frequency.

Figure 7.2 gives the average raw and group accuracy (defined in Section 7.1.3) of lazy

grouping for each configuration. For all, there is a p-value of < 0.01. Thus p-value is left out of

the table. Unless otherwise noted, measurements are for groupings with two groups. The focus

is on two groups since this is a likely use case (e.g. one group for each core type). However, a

few experiments are also included which use three groups in order to demonstrate the flexibility

of lazy grouping. The table shows that for nearly all configurations, lazy grouping gives greater

than 90% raw and group accuracy.

For selected configurations boxplots are presented that show the distribution of the behavior

of groups across all benchmarks.

In Figure 7.3, plots are shown for the two most different cores (i7 and Atom) for both

two and three groups. Next, asymmetric configurations were chosen which either provide

interesting asymmetry and/or test various types of asymmetry.

In Figure 7.4, a plot for the configuration containing the two most varied core types (the

i7 and Atom at their most extreme frequencies) is shown. The figure also contains boxplots
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Core Type 1 Core Type 2 Group
Model Freq. Model Freq. Accur. Accur.

*i7 2.93 92.2% 94.0%
*i7 2.93 three groups 85.0% 89.3%

*Atom 1.60 88.4% 87.3%
*Atom 1.60 three groups 89.8% 88.1%

Core 2 Quad 2.40 94.0% 93.9%
Pentium 4 2.00 98.3% 96.6%

Pentium M 1.60 92.2% 92.2%
Opteron 2431 2.40 92.8% 92.5%

*i7 2.93 i7 1.20 95.0% 91.0%
*i7 2.93 Atom 0.80 94.0% 93.6%
i7 2.40 Core 2 Quad 2.40 94.5% 92.3%
i7 1.60 Core 2 Quad 1.60 94.5% 88.8%
i7 2.93 Core 2 Duo 1.60 98.7% 90.0%
i7 1.60 Core 2 Duo 1.60 95.3% 92.5%
i7 2.93 Pentium 4 2.00 92.7% 92.4%

*i7 2.93 Pentium M 0.80 91.6% 91.4%
i7 2.40 Opteron 2431 2.40 92.6% 89.0%
i7 2.93 Opteron 2431 0.80 91.0% 88.9%

*Atom 1.60 Atom 0.80 92.3% 89.2%
Atom 1.60 Core 2 Quad 1.60 93.1% 93.4%
Atom 1.60 Core 2 Duo 1.60 92.8% 90.2%
Atom 0.80 Core 2 Duo 1.60 93.2% 92.0%
Atom 0.80 Opteron 2431 2.40 92.5% 88.0%
Atom 0.80 Opteron 2431 0.80 96.3% 90.1%

Core 2 Quad 1.60 Core 2 Duo 1.60 94.3% 94.3%
Core 2 Quad 2.40 Pentium 4 2.00 94.4% 92.6%
Core 2 Quad 2.40 Pentium M 0.80 94.3% 93.3%
Core 2 Quad 2.40 Opteron 2431 2.40 96.0% 94.8%
Core 2 Quad 2.40 Opteron 2431 0.80 95.8% 93.8%
Core 2 Duo 1.83 Pentium 4 2.00 95.2% 93.4%
Core 2 Duo 1.83 Pentium M 0.80 94.5% 92.5%

Pentium 4 2.00 Pentium M 0.80 95.2% 95.5%
Pentium 4 2.00 Opteron 2431 2.40 94.0% 91.7%
Pentium 4 2.00 Opteron 2431 0.80 92.8% 90.9%

Pentium M 0.80 Opteron 2431 2.40 90.2% 91.3%
Pentium M 0.80 Opteron 2431 0.80 94.2% 91.1%

Opteron 2431 1.90 Opteron 6168 1.90 97.8% 95.8%
Opteron 2431 0.80 Opteron 6168 0.80 97.6% 94.9%

Table 7.2 Accuracy of lazy grouping per configuration. Those with one core type represent
grouping of single core behavior. Configurations marked with * have boxplots
shown later.
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Figure 7.3 Group distribution across all benchmarks for single core types. For all cores, we
see a distinct difference in group behavior.
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Figure 7.4 Group distribution across all benchmarks for AMPs. For all configurations, we
see a distinct difference in group behavior.
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for configurations containing the most complex core (i7) and the most simple core (Atom)

where only the frequency is varied. Finally, a plot for the combination of the i7 and Pentium

M running at their extreme frequencies is also shown. This differs from the configuration

containing the i7 and the Atom in that both cores use out-of-order execution (Atom uses in-

order execution).

For all configurations, there is a significant difference in the behaviors for each groups.

Configurations with smaller differences between core types appear to have more outliers, how-

ever, the accuracy is still high in such cases.

Finally, for the most varied asymmetric configuration (containing the i7 at 2.93GHz with

the Atom at 0.80GHz) the boxplots for the grouping for each benchmark for each input set is

presented in Figure 7.5.

Nearly all benchmark and input combinations show a significant difference in the distri-

bution of behavior for the two groups. Two benchmarks, ammp and gzip, differ in that they

only give a single group (in both cases, the second group). Fortunately, as the figure shows,

the behavior of all loops in these benchmarks fit nicely into this group. The only benchmark

and input combination where the inner quartile ranges slightly overlap is bzip2 with its third

input (denoted bzip2.2 in the figure). Fortunately, the overlap is small, and the accuracy for

this grouping is still 86%.



www.manaraa.com

71

●

0.
0

0.
5

1.
0

1.
5

2.
0

ammp.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

applu.0

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

apsi.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

art.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

art.1

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.0

●

●

●●●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.1

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

bzip2.2

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

crafty.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

equake.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

facerec.0

●

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

gap.0

0.
0

0.
5

1.
0

1.
5

2.
0

gzip.0

●0.
0

0.
5

1.
0

1.
5

2.
0

gzip.1

●0.
0

0.
5

1.
0

1.
5

2.
0

gzip.2
0.

0
0.

5
1.

0
1.

5
2.

0

gzip.3

●

●
0.

0
0.

5
1.

0
1.

5
2.

0

gzip.4

●

●

●

●●

●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

lucas.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mcf.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mesa.0

●●

●●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

mgrid.0

●

●

●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

parser.0

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

swim.0

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

twolf.0

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.0

●

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.1

●

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vortex.2

●
●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vpr.0

●

●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

vpr.1

●●
●
●

0 1

0.
0

0.
5

1.
0

1.
5

2.
0

wupwise.0

Figure 7.5 Boxplots for each benchmark and input combination for the asymmetric configu-
ration containing two core types: Intel i7 @ 2.93GHz and Intel Atom @ 0.80GHz.
Y-axis behavior is the difference between in behavior between the two core types.
Numbering after the benchmark name denotes input set.
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7.4 Space Overhead

Sending the similarity metrics (computed at compile time) with programs has some over-

head in terms of space. Approximately 80bytes per loop is needed in the current implementa-

tion, however, this could easily be reduced if necessary. Figure 7.6 shows the required space

overhead for each benchmark.

Figure 7.6 Space overhead of behavior metrics.

On average the space overhead is approximately 2%. The best case, vortex, has only

0.25% space overhead. Again, this overhead could be reduced if necessary by simply using

more compact data types (e.g., the implementation currently uses, but does not necessarily

need, four bytes to store the number of basic blocks in a loop).

7.5 Lazy Grouping in Phase-based Tuning

Lazy grouping has been tested within phase-based tuning on an AMP containing the Opteron

2431 with five cores at 0.80GHz and one at 2.40GHz. This system was chosen over one similar

to the previous evaluation since the core types vary more (“fast” core frequency is 3x “slow”

core) and the core type ratio is more realistic (more skewed). Because there are fewer “fast”
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cores (1/6 instead of 1/2), it is expected that speedups will be smaller than those reported in

the previous evaluation.

7.5.1 Impact of Lazy Grouping on Overheads

Since lazy grouping eliminates the need for runtime monitoring and analysis, the code

needed to perform phase-based tuning at runtime is simplified significantly.

7.5.1.1 Space Overhead

In terms of space overhead, there is an average decrease of 25.3% over phase-based tuning

with compile time grouping. That is, the space overhead of the best technique (loop strategy

with minimum size of 45) gives an average 2.95% space overhead instead of 3.98%. This re-

duction is because the body of the inserted code no longer needs to contain code for monitoring

behavior and making core mapping decisions.

Figure 7.7 Space overhead per benchmark of phase-based tuning when using lazy grouping.

Figure 7.7 shows the space overhead per benchmark of phase-based tuning when lazy

grouping is used. The figure shows that nearly all benchmarks have less than 4% space over-
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head (most are around 2%). A few benchmarks have a significantly higher space overhead

(e.g., swim, mcf, applu, and lucas). Some of these are very small programs (e.g., swim and

mcf) whereas the others have many non-nested loops (e.g., applu and lucas).

7.5.1.2 Time Overhead

For time overhead, lazy grouping gives an average decrease of 55.9% time overhead from

phase-based tuning with compile time grouping. Again using the best technique lazy grouping

reduces time overhead to 0.075% from 0.17% when compile time grouping was used. This

reduction is mainly because the inserted code no longer needs to check if a decision regarding

core mapping has been made. Additionally, the reduction in space overhead may improve

cache behavior in some cases.

The previous measurements considered the time overhead of benchmarks running as part

of workloads. Thus, latency of system calls is hidden by executing other processes in the

workload while waiting for the system calls to complete. We now consider the overhead of

benchmarks running in isolation. Figure 7.8 shows these overheads per benchmark and Fig-

ure 7.9 shows a summary boxplot of this data.

Figure 7.8 Time overhead per benchmark of phase-based tuning when using lazy grouping.



www.manaraa.com

75

● ●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Percent time overhead

Figure 7.9 Summary of time overhead of phase-based tuning when using lazy grouping.

These figures shows that most benchmarks have extremely low time overheads even when

running in isolation (long latency system calls can not be hidden and cache behavior is more

likely to be degraded). Most benchmarks have below 0.3% time overhead and several have no

noticeable overhead.

7.5.2 Impact of Lazy Grouping on Speedup and Fairness

For this experimental setup, using phase-based tuning with compile time grouping gives

approximately 6% average process speedup (for a continuous job feed) over the stock Linux

scheduler. With lazy grouping an average speedup of approximately 25% was observed. This

improvement over phase-based tuning with compile time grouping is due to three factors.

First, the lazy grouping has a distribution more in line with the core type distribution (i.e.,

more skewed). Second, the group-to-core assignment of the lazy groups is known statically

whereas the compile time grouping approach must perform runtime monitoring. Third, lazy

grouping is more accurate (Figure 7.1).

In terms of fairness, the use of lazy grouping reduces max-flow by and additional 5% (a

17% decrease in max-flow instead of 12% achieved with compile-time grouping). Max-stretch

is further reduced by 8% (28% decrease instead of 20%).
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7.6 Summary

The results in this chapter demonstrated that lazy grouping is more accurate than compile

time grouping. The results also showed that lazy grouping is accurate for a wide range of

target machines and AMPs while requiring few groups. Finally, the results showed that lazy

grouping drastically improves the application of phase-based tuning and makes it applicable

to a more wide range of target AMPs.
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CHAPTER 8. Related Work

This chapter gives an overview of previous work that is related to the major components

of this thesis. First, previous techniques related to phase-based tuning and optimization for

asymmetric multicore processors is discussed. Then, previous work related to lazy grouping

and machine learning are discussed.

8.1 Related Work: Phase-based Tuning

While there is no previous work which has all of the benefits of phase-based tuning, there

does exist previous work which aims to effectively utilize asymmetric systems. This work may

be divided into two categories. First, those which aim to improve performance for heteroge-

neous multicore processors. Second, those which aim to develop algorithms and programming

environments for heterogeneous systems.

Becchi et al. [9] propose a dynamic assignment technique making use of the IPC of pro-

gram segments. However, this work focuses largely on the load balance across cores whereas

lazy grouping aims to maximize throughput. Another technique which focuses on load bal-

ancing in the scheduler was proposed by Fedorova et al. [72]. They make the case that a core

assignment must be balanced. Shelepov et al. [72] propose a technique which does not require

dynamic monitoring (uses static performance estimates). However, this technique does not

consider behavior changes during execution. Li et al. [53] and Koufaty et al. [42] focus on

load balancing in the OS scheduler. They modify the OS scheduler based on the asymmetry

of the cores. While this produces an efficient system, the scheduler needs knowledge of the
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underlying architecture. Phase-based tuning differs from these in the following way. First, this

work is not directly concerned with load balancing. Second, this work focuses on properly

scheduling the different phases of a programs behavior.

Tam et al. [81] determine thread-to-core assignment based on increasing cache sharing.

They use cycles per instruction (CPI) as a metric to improve sharing for symmetric multicore

processors. Kumar et al. propose a temporal dynamic approach [45]. After pre-defined time

intervals, a sampling phase is triggered. After this sampling phase the system makes assign-

ment decisions for all currently executing processes. This assignment is then used for some

amount of time. This procedure is carried out throughout the entire programs execution. To re-

duce the dynamic overhead, phase-based tuning does not require monitoring once assignment

decisions have been made.

Jiménez et al. developed a scheduler aimed at making use of heterogeneity in terms of

CPU and GPU [40]. This work is targeted at a specific type if heterogeneous multicores with

different ISAs whereas this work focuses on single ISA asymmetric multicores. Since they

focus on cores with different ISAs they require the programmer to note which functions can

be executed on both core types or provide implementations for both core types.

Mars and Hundt [56] use a similar hybrid technique to make use of a range of static op-

timizations and choose the correct one at runtime using monitoring. Their approach differs

in that their optimizations are multiple versions of the code. This requires optimization to be

done during compilation to avoid problems such as indirect branches in the binary. Thus they

are tied to a specific compiler (phase-based tuning is not). Similarly, Dubach et al. [23] use

machine learning to dynamically predict desired hardware configurations for program phases.

Phase-based tuning does not determine the best configuration for phases, instead, it chooses

the best from a set of choices.

A wide range of research has been done on algorithms for optimal distribution of compu-

tation over heterogeneous networks of computers [47, 48, 69]. This work can be divided into

two categories: approaches for finding an optimal distribution that assume that the processor
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characteristics and the program characteristics are known [8, 47, 69], and techniques that allow

programmers to specify the program’s characteristics and use this input to obtain an optimal

distribution [46, 48]. Instead of working with a heterogeneous network of computers, this work

focuses on heterogeneous multicores. The main issue with these two classes of ideas is that

currently the level of specifications expected from the programmer is high, which significantly

increases the intellectual burden of the task, which in turn impairs its practicality. Phase-based

tuning eliminates this burden.

8.2 Related Work: Lazy Grouping

This section gives an overview of previous work which is related to lazy grouping. This

includes techniques for grouping similar programs or program segments and techniques that

use machine learning for program optimization.

8.2.1 Behavior Similarity

There is a large body of work on determining phase behavior [75, 24, 79], using phase

behavior to reduce simulation time [7, 20, 74, 30, 79, 73, 51], guide optimizations [37, 35,

64, 59, 67, 68, 82, 28, 13], etc. Many of these techniques determine phase information with

a previously generated dynamic profile [75]. Other techniques determine phase behavior dy-

namically [64], these techniques do not require representative input, however, they are likely

to incur dynamic overheads.

Among these techniques, the most closely related is that of Sherwood et al. [75] which

developed a technique for clustering segments of execution time. Runtime profiles are gathered

and execution count of basic blocks is used to cluster program segments using k-means [55].

Lazy grouping differs in that it groups structural elements of the program rather than execution

time. Further, their clustering is based on profiles of executed basic blocks rather than statically

computed behavior metrics like lazy grouping.
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Hoste and Eeckhout [36] present the MICA tool which uses execution profiles to cluster

benchmarks with similar behavior. Unlike their work, all of the analysis used for lazy grouping

is static. Also, lazy grouping considers program segments rather than whole programs.

8.2.2 Machine Learning for Optimization

There has been substantial previous work using machine learning to pick effective opti-

mizations both statically and at runtime [17, 1, 52, 83, 15, 2, 62]. Here, the previous work

most related to lazy grouping is discussed.

Choi and Yueng [17] use machine learning to determine efficient thread distributions on

SMT systems. Periodically throughout execution (i.e. every n cycles) threads are reassigned

to potentially different cores. Lazy grouping differs in that it analyzes behavior based on

program structure rather than time. Also, they train their neural network dynamically whereas

lazy grouping uses neural networks to determine grouping statically. However, the general

ideas from lazy grouping could potentially be used to move some of their dynamic analysis

into static analysis.

AbouGhazaleh et al. [1] use machine learning to dynamically scale clock frequency in

embedded systems. Representative inputs are used to determine efficient power management

policies which are used for training. Their compiler uses this information to optimize the pro-

gram. At runtime by monitoring performance periodically, decisions are made regarding the

power management policy. Lazy grouping differs in that its “phases” are determined without

ever running the program.

Li et al. [52] use neural networks to predict power consumption of algorithms. Their

networks take as input user supplied values for time complexity, space complexity, and input

scale. Lazy grouping differs in that it is completely automatic. Lazy grouping also focuses on

approximating behavior rather than power consumption (e.g. lazy grouping does not focus on

how many iterations a loop may take but instead behavior of the iterations).

Wang and O’Boyle [83] use machine learning to help partition stream based programs onto
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cores. The goal is to choose a good combination of parameters (e.g. level of loop unrolling,

number of threads per loop, when to split and join, etc). Unlike their approach, lazy group-

ing does not consider modifications to program structure. Further, lazy grouping focuses on

behavior of individual segments rather than entire workloads.

Moss et al. [62] use machine learning to improve the scheduling of straight line code (i.e.

basic blocks). Lazy grouping differs in that it is focused on predicting behavior rather than

changing it. Lazy grouping also looks at loops (a larger granularity) rather than basic blocks.
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CHAPTER 9. Future Work

Here, future work is discussed. First ideas for future applications of phase-based tuning

and lazy grouping are discussed. Then, potential improvements for the existing applications of

phase-based tuning and lazy grouping are given.

9.1 Potential Applications of Phase-based Tuning

Here, some potential applications of phase-based tuning beyond optimization for AMPs

are discussed. This includes improving JIT optimizers and optimizing for power consumption.

9.1.1 JIT Optimizations

One potential direction for future work is to use phase-based tuning to apply more typical

program optimizations at runtime like those found in a JIT optimizing compiler. The advantage

of applying phase-based tuning to this style of optimization is that the JIT optimizer could

focus on optimizations to code that are more likely to be beneficial and also begin to perform

them before they are needed (i.e., before execution reaches these points). For example, suppose

the target optimization is loop splitting. If the JIT optimizer determines that loop splitting gave

significant benefits for a certain loop, similar loops could be optimized (in parallel to program

execution) before they are reached. Phase-based tuning could also be used to avoid attempting

to optimize loops in groups determined not worthwhile to split.

The difficulties of applying phase-based tuning to this problem are mostly with respect

to the idea of similarity. In phase-based tuning, similarity is defined in terms of response
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to the target optimization(s). Since the target optimization(s) are substantially different than

previous work (and include code modification), similarity will have a different meaning than

that explored in this work. Consider the example of the loop splitting optimization. In this

case, loops could be grouped based on their structure and/or various cache metrics. Future

work in this direction would be focused on answering the question “What does it mean for two

code segments to be similar?” for various JIT optimizations.

9.1.2 Power Consumption

Another application for phase-based tuning is to use frequency scaling to optimize the

performance to power ratio for processors. Frequency scaling is commonly used in mobile

CPUs for reducing power consumption. The idea is that when the system is under low load

and/or running on battery, the clock frequency (and cache associativity in the Intel Atom) is

reduced. Unfortunately, there are times when the system is under a heavy load but may spend

much of its time waiting for other resources such as memory. Consider an application of

phase-based tuning where instead of switching core types, core frequency of the current core

is scaled. This has the advantage of increasing the core frequency only when it will greatly

improve performance. Further, grouping can be tuned based on the desired aggressiveness of

power savings.

A major difficulty with this direction for future work is that processes often do not run

by themselves on a core. That is, other processes often share the same core. So, changes

in frequency to a core will potentially cause other processes to not execute at their desired

frequency. For example, suppose we have two processes running on the same core. One

process does not benefit from high-frequency execution whereas the other does. Since most

schedulers will continually switch between the two processes, if frequency scaling is done the

way previous work performs core switches, one process will execute at a non-ideal frequency.

For example, suppose the process wanting low frequency enters this phase first and changes

the core frequency to low. Next, the process wanting high frequency enters this phase and
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changes the frequency to high. In this case, the process trying to save power by using a low

frequency will not save any power.

A potential solution to this problem is to make the scheduler aware of this power saving

technique. Then, schedulers could choose to switch frequency during context switches and/or

perform load balancing based on each processes desired frequency. For example, suppose

we have a system with two cores that is running four processes. Half the processes want

to run at low frequency and the other half desire a high frequency. If the operating system

groups these processes onto cores by desired frequency (the two “fast” processes on one core

and the two “slow” on the other), it can avoid constantly changing core frequencies. Both of

these techniques have complex runtime costs and benefits that would need to be explored. For

example, costs of changing frequency (in terms of both run time and power) would need to be

determined as well as costs of changing cores (run time and power). Knowledge of these costs

would be necessary in order to determine whether or not frequency should be switched upon

context switches or if processes should be groups (and potentially moved).

9.2 Potential Applications of Lazy Grouping

The basic idea behind lazy grouping is to statically group program segments which will

behave similarly. This has many potential applications. Some of these are now discussed.

9.2.1 Guide Optimization

One potential application of lazy grouping is for determining program segments for static

optimization. A lazy grouping of segments could be used to find groups of program seg-

ments that perform poorly on the target system and thus could use optimization. For example,

different systems have different cache hierarchies. Depending on the target system, cache op-

timizations such as loop splitting may or may not be desirable. Thus, at install time, we can

statically optimize the program for the target machine.
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To adapt lazy grouping for this use, the construction of the training set would change.

Instead of observed execution behavior, the expected outputs in the training set would be re-

sponse to given optimizations. Thus, each code segment in the training set would need to

be run with and without the candidate optimization and benefits between the two determined.

Benefits here depends on the goal of optimization (e.g., reducing space, time, etc.). A potential

difficulty with this direction is that additional similarity metrics may be needed for accurate

grouping (e.g., metrics regarding control structure).

9.2.2 Benchmark Selection

There has been a substantial amount of previous work for predicting similarity in terms of

whole benchmarks [36] and throughout program execution [75]. This previous work is fre-

quently used for choosing a small but diverse set of benchmarks or points within benchmarks

that represent a wide range of program behavior. These techniques typically select a repre-

sentative set for all potential target architectures. Lazy grouping could be used to determine

such a grouping tailored specifically for the target system rather than all possible systems. This

would likely further reduce the number of benchmarks or points within benchmarks needed to

represent a wide range of program behavior.

9.3 Small Improvements

There are several options for small improvements to the techniques presented in this thesis.

These future directions for both phase-based tuning and lazy grouping are described here.

9.3.1 Phase-based Tuning

Load balancing during phase-based tuning for AMPs could be improved in specific situa-

tions. For example, for systems aiming to maximize performance, the scheduler could ensure

that the “fast” cores are never idle while “slower” cores are busy. To do this efficiently, the
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OS scheduler’s load balancing techniques would likely need to be changed. Additionally new

“soft” CPU affinity calls would likely need to be added (current affinity calls are “hard” in

that the scheduler must respect call arguments for allowable cores). This has the disadvantage

of requiring OS modifications. These techniques could be worked into the phase-mark code.

However, the overhead easily becomes too large.

9.3.2 Lazy Grouping

Minor improvements to lazy grouping mostly revolve around improving the computation

of similarity metrics. Here, some of these potential improvements are described.

9.3.2.1 More similarity metrics

The most obvious source of improvements is adding more similarity metrics. For example,

the accuracy of runtime branch prediction could be estimated. Since branch miss-prediction

at runtime has a high penalty, estimating this aspect of behavior will likely improve grouping

accuracy. Possible techniques for estimating this behavior could involve looking at patterns

in the code (like Buse and Weimer [14]) or use of more complex static analysis for branch

prediction. Another metric could be register usage rates (like those used in MICA [36]).

9.3.2.2 Precision of Similarity Metrics

Another source of improvement is improving the precision of each underlying similarity

metric. For example, the reuse distance analysis used for data cache behavior could look more

closely at operands. Currently, the “stepping” of memory locations is not considered. Consider

an instruction which uses memory location that is increased by the size of a word at the end of

each loop iteration (e.g. array of words). In such a case, it is likely that accessing this memory

location will be a cache hit (rough probability of n−1
n

where n is the number of words per

cache block). Now, suppose the memory location is increased by more than the size of a cache

block at each iteration (e.g. array of large structures). In this case, it is likely that accessing
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this memory location will be a cache miss (roughly 100% assuming pre-fetching is not done).

However, in the current analysis, the best case assumption is made, so cases such as this are

handled less accurately.

For another example, consider the static estimation of ILP. One way to improve precision

would be to have the analysis consider functional unit hazards instead of just register and

memory location dependencies.
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CHAPTER 10. Conclusion

AMPs are an important class of processors that have been shown to provide nice trade-off

between the die size, number of cores on a die, performance, and power [31, 44, 61]. Devising

techniques for their effective utilization is an important problem that influences the eventual

uptake of these processors [53, 61]. The need to be aware of, and optimize based on, the

applications’ characteristics and the nature of the AMP significantly increases the burden on

developers. Furthermore, the need to create separate versions for each target AMP decreases

reusability and creates a maintenance burden.

This thesis described a novel technique called phase-based tuning which solves all of these

problems by utilizing the phase behavior that is common in programs. Phase-based tuning is

fully automatic, can be deployed in existing tool chains, and produces asymmetry-independent

binaries. This significantly reduces the expertise necessary for programming performance-

asymmetric multicores. Apart from these benefits, phase-based tuning also has several per-

formance advantages. Experiments show that, for systems with simple asymmetry, a 36%

reduction in the average process time compared to the stock Linux scheduler. This is done

while incurring negligible overheads (less than 0.2% time overhead) and maintaining fairness.

To make phase-based tuning applicable to a wide variety of AMPs, lazy grouping was pro-

posed and evaluated. Lazy grouping is a novel static for accurately detecting similar program

segments. Results demonstrated that lazy grouping is significantly more accurate than compile

time grouping (when the target machine is unknown). Experimental results show that lazy

grouping is more than 90% accurate for nearly all target machines. Finally, the benefits of lazy

grouping over compile time grouping for phase-based tuning were demonstrated.
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